Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris

Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산

  • Yoon, Shin-Ah (Dept. of Biotechnology, The Catholic University of Korea) ;
  • Han, Jin-Yee (Dept. of Biotechnology, The Catholic University of Korea) ;
  • Kim, Hyung-Kwoun (Dept. of Biotechnology, The Catholic University of Korea)
  • 윤신아 (가톨릭대학교 생명공학과) ;
  • 한진이 (가톨릭대학교 생명공학과) ;
  • 김형권 (가톨릭대학교 생명공학과)
  • Received : 2011.07.04
  • Accepted : 2011.07.26
  • Published : 2011.09.28

Abstract

Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.

바이오디젤은 긴 사슬 지방산의 알킬 에스테르로서 동물성 지방 또는 식물성 오일과 알코올이 반응하여 에스테르 교환 반응에 의해 생성되는 대체연료이다. 지난 십여 년 동안, 다양한 리파아제를 이용한 바이오디젤 생산에 대해 연구되었다. 하지만 효소 촉매 공정을 통한 바이오디젤 생산의 경우, 높은 효소 단가로 산업적 공정에 쉽게 적용할 수 없었다. 이러한 문제점을 극복하기 위해, 저렴한 오일 원료를 선택하거나, 바이오디젤 생산에 적합한 리파아제를 스크리닝하는 과정 또는 리파아제 고정화 방법이 활발히 연구되었다. 이번 연구에서는 P. vulgaris에서 유래한 리파아제 K80을 E. coli균에서 발현하여 얻은 효소액으로 바이오디젤을 생산하였다. 재조합 리파아제 K80은 높은 발현량을 보였으며, 높은 가수분해 반응의 비활성도(specific activity)와 유기용매에서 높은 안정성을 확인했다. 리파아제 K80은 올리브 오일과 메탄올을 3-stepwise 방법을 이용하여 바이오디젤을 생산할 수 있었다. 리파아제 K80을 소수성 결합을 이용하여 담체 표면에 흡착시켜 얻은 고정화 K80을 이용하여 수용성 리파아제 K80과 동일한 방법으로 바이오디젤을 생산한 결과, 효율적으로 바이오디젤 생산을 확인했다. 고정화 K80은 다양한 식물성 오일과 메탄올을 사용하여 효과적으로 바이오디젤을 생산하였다. 고정화 K80을 이용하여 바이오디젤 생산뿐만 아니라 다른 산업적 공정에서도 활용할 수 있을 것으로 기대한다.

Keywords

References

  1. Ackman, R. G., W. M. N. Ratnayake, and B. Olsson. 1988. The "basic" fatty acid composition of Atlantic fish oils: Potential similarities useful for enrichment of polyunsaturated fatty acids by urea complexation. J. Am. Oil Chem. Soc. 65: 136-138. https://doi.org/10.1007/BF02542565
  2. Akoh, C. C., S. W. Chang, G. C. Lee, and J. F. Shaw. 2007. Enzymatic approach to biodiesel production. J. Agric. Food Chem. 55: 8995-9005. https://doi.org/10.1021/jf071724y
  3. Bajaj, A., P. Lohan, P. N. Jha, and R. Mehrotra. 2010. Biodiesel production through lipase catalyzed transesterification: an overview. J. Mol. Catal. B Enzym. 62: 9-14. https://doi.org/10.1016/j.molcatb.2009.09.018
  4. Charpe, T. W. and V. K. Rathod. 2010. Biodiesel production using waste frying oil. Waste Manag. 31: 85-90.
  5. Cunha, A. G., G. Fernandez-Lorente, J. V. Bevilaqua, J. Destain, L. M. Paiva, D. M. Freire, R. Fernández-Lafuente, and J. M. Guisán. 2007. Immobilization of Yarrowia lipolytica lipase - a comparison of stability of physical adsorption and covalent attachment techniques. Appl. Biochem. Biotechnol. 146: 49-56.
  6. Dizge, N., A. B. Keskinler, and A. Tanriseven. 2009. Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer. Biochem. Eng. J. 44: 220-225. https://doi.org/10.1016/j.bej.2008.12.008
  7. Du, W., Y. Y. Xu, D. H. Liu, and J. Zeng. 2004. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B Enzym. 30: 125-129. https://doi.org/10.1016/j.molcatb.2004.04.004
  8. Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397. https://doi.org/10.1016/S0958-1669(02)00341-5
  9. Jegannathan, K. R., S. Abang, D. Poncelet, E. S. Chan, and P. Ravindra. 2008. Production of biodiesel using immobilized lipase - a critical review. Crit. Rev. Biotechnol. 28: 253-264. https://doi.org/10.1080/07388550802428392
  10. Kharrat, N., Y. B. Ali, S. Marzouk, Y. T. Gargouri, and M. Karra-Châabouni. 2011. Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochem. 46: 1083-1089. https://doi.org/10.1016/j.procbio.2011.01.029
  11. Kim, H. K., J. K. Lee, H. M. Kim, and T. K. Oh. 1996. Characterization of an alkaline lipase from Proteus vulgaris K80 and the DNA sequence of the encoding gene. FEMS Microbiol. Lett. 135: 117-121. https://doi.org/10.1111/j.1574-6968.1996.tb07975.x
  12. Kim, H. K., S. Y. Park, J. K. Lee, and T. K. Oh. 1996. Partial interfacial activation of Proteus vulgaris lipase overexpressed in Escherichia coli. Biosci. Biotechnol. Biochem. 60: 1365-1367. https://doi.org/10.1271/bbb.60.1365
  13. Lee, H. W., S. J. Yoon, H. K. Kim, K. M. Park, T. K. Oh, and J. K. Jung. 2000. Overexpression of an alkaline lipase gene from Proteus vulgaris K80 in Escherichia coli BL21/ pKLE. Biotechnol. Lett. 22: 1543-1547. https://doi.org/10.1023/A:1005621532280
  14. Li, N. W., M. H. Zong, and H. Wu. 2009. Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem. 44: 685-688. https://doi.org/10.1016/j.procbio.2009.02.012
  15. Lu, J., L. Deng, R. Zhao, R. Zhang, F. Wang, and T. Tan. 2010. Pretreatment of immobilized Candida sp.99-125 lipase to improve its methanol tolerance for biodiesel production. J. Mol. Catal. B Enzym. 62: 15-18. https://doi.org/10.1016/j.molcatb.2009.08.002
  16. Parawira, W. 2009. Biotechnological production of biodiesel fuel using biocatalyzed transesterification: A review. Crit. Rev. Biotechnol. 29: 82-93. https://doi.org/10.1080/07388550902823674
  17. Salis, A., M. Pinna, M. Monduzzi, and B. Solinas. 2008. Comparison among immobilized lipases on macroporous polypropylene toward biodiesel synthesis. J. Mol. Catal. B Enzym. 54: 19-26. https://doi.org/10.1016/j.molcatb.2007.12.006
  18. Shimada, Y., Y. Watanabe, T. Samukawa, A. Sugihara, H. Noda, H. Fukuda, and Y. Tominaga. 1999. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76: 789-793. https://doi.org/10.1007/s11746-999-0067-6
  19. Shimada, Y., Y. Watanabe, A. Sugihara, and Y. Tominaga. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B Enzym. 17: 133-142. https://doi.org/10.1016/S1381-1177(02)00020-6
  20. Tan, T., J. Lu, K. Nie, L. Deng, and F. Wang. 2010. Biodiesel production with immobilized lipase: A review. Biotechnol. adv. 28: 628-634.
  21. Tongboriboon, K., B. Cheirsilp, and A. H-Kittikun. 2010. Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. J. Mol. Catal. B Enzym. 67: 52-59. https://doi.org/10.1016/j.molcatb.2010.07.005
  22. Wang, Y., X. Shen, Z. Li, X. Li, F. Wang, X. Nie, and J. Jiang. 2010. Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. J. Mol. Catal. B Enzym. 67: 45-51. https://doi.org/10.1016/j.molcatb.2010.07.004
  23. Yang, K. S., J. H. Sohn, and H. K. Kim. 2009. Catalytic properties of a lipase from Photobacterium lipolyticum for biodiesel production containing a high methanol concentration. J. Biosci. Bioeng. 107(6): 599-604. https://doi.org/10.1016/j.jbiosc.2009.01.009
  24. Yoo, H. Y., J. R. Simkhada, S. S Cho, D. H. Park, S. W. Kim, C. N. Seong, and J. C. Yoo. 2011. A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour. Technol. 102: 6104-6111. https://doi.org/10.1016/j.biortech.2011.02.046