• Title/Summary/Keyword: Linking Theory

Search Result 136, Processing Time 0.025 seconds

PERIODIC SOLUTIONS FOR THE NONLINEAR HAMILTONIAN SYSTEMS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.331-340
    • /
    • 2009
  • We show the existence of nonconstant periodic solution for the nonlinear Hamiltonian systems with some nonlinearity. We approach the variational method. We use the critical point theory and the variational linking theory for strongly indefinite functional.

  • PDF

MULTIPLICITY RESULTS AND THE M-PAIRS OF TORUS-SPHERE VARIATIONAL LINKS OF THE STRONGLY INDEFINITE FUNCTIONAL

  • Jung, Tack-Sun;Choi, Q-Heung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.4
    • /
    • pp.239-247
    • /
    • 2008
  • Let $I{\in}C^{1,1}$ be a strongly indefinite functional defined on a Hilbert space H. We investigate the number of the critical points of I when I satisfies two pairs of Torus-Sphere variational linking inequalities and when I satisfies m ($m{\geq}2$) pairs of Torus-Sphere variational linking inequalities. We show that I has at least four critical points when I satisfies two pairs of Torus-Sphere variational linking inequality with $(P.S.)^*_c$ condition. Moreover we show that I has at least 2m critical points when I satisfies m ($m{\geq}2$) pairs of Torus-Sphere variational linking inequalities with $(P.S.)^*_c$ condition. We prove these results by Theorem 2.2 (Theorem 1.1 in [1]) and the critical point theory on the manifold with boundary.

  • PDF

BOUNDARY VALUE PROBLEM FOR A CLASS OF THE SYSTEMS OF THE NONLINEAR ELLIPTIC EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2009
  • We show the existence of at least two nontrivial solutions for a class of the systems of the nonlinear elliptic equations with Dirichlet boundary condition under some conditions for the nonlinear term. We obtain this result by using the variational linking theory in the critical point theory.

  • PDF

THE NUMBER OF THE CRITICAL POINTS OF THE STRONGLY INDEFINITE FUNCTIONAL WITH ONE PAIR OF THE TORUS-SPHERE VARIATIONAL LINKING SUBLEVELS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.527-535
    • /
    • 2008
  • Let $I{\in}C^{1,1}$ be a strongly indefinite functional defined on a Hilbert space H. We investigate the number of the critical points of I when I satisfies one pair of Torus-Sphere variational linking inequality. We show that I has at least two critical points when I satisfies one pair of Torus-Sphere variational linking inequality with $(P.S.)^*_c$ condition. We prove this result by use of the limit relative category and critical point theory on the manifold with boundary.

  • PDF

NONTRIVIAL PERIODIC SOLUTION FOR THE SUPERQUADRATIC PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2009
  • We show the existence of a nontrivial periodic solution for the superquadratic parabolic equation with Dirichlet boundary condition and periodic condition with a superquadratic nonlinear term at infinity which have continuous derivatives. We use the critical point theory on the real Hilbert space $L_2({\Omega}{\times}(0 2{\pi}))$. We also use the variational linking theorem which is a generalization of the mountain pass theorem.

  • PDF

CRITICAL POINTS RESULT FOR THE C1,1 FUNCTIONAL AND THE RELATIVE CATEGORY THEORY

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.437-445
    • /
    • 2008
  • We show the existence of at least four nontrivial critical points of the $C^{1,1}$ functional f on the Hilbert space $H=X_0{\oplus}X_1{\oplus}X_2{\oplus}X_3{\oplus}X_4$, $X_i$, i = 0, 1, 2, 3 are finite dimensional, with f(0) = 0 when two sublevel subsets, torus with three holes and sphere, of f link, the functional f satisfies sup-inf variatinal linking inequality on the linking subspaces, the functional f satisfies $(P.S.)_c$ condition, and $f{\mid}_{X_0{\oplus}X_4}$ has no critical point with level c. We use the deformation lemma, the relative category theory and the critical point theory for the proof of main result.

  • PDF

THE INVESTIGATION OF MULTIPLICATION OF SUSPENSION BRIDGE EQUATION USING LINKING THEORY

  • Nam, Hyewon
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • It is well known that a suspension bridge may display certain oscillations under external aerodynamic forces. Under the action of a strong wind, in particular, a narrow and very flexible suspension bridge can undergo dangerous oscillations. So it would be very contributive to determine under what conditions a similar situation cannot occur, and find out safe parameters of the bridge construction. In this paper, we investigate relations between the multiplicity of solutions and nonlinear terms in this suspension bridge equation using critical point theorem and linking theorem.

  • PDF

SOLVABILITY FOR A CLASS OF THE SYSTEM OF THE NONLINEAR SUSPENSION BRIDGE EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.31 no.1
    • /
    • pp.75-85
    • /
    • 2009
  • We show the existence of the nontrivial periodic solution for a class of the system of the nonlinear suspension bridge equations with Dirichlet boundary condition and periodic condition by critical point theory and linking arguments. We investigate the geometry of the sublevel sets of the corresponding functional of the system, the topology of the sublevel sets and linking construction between two sublevel sets. Since the functional is strongly indefinite, we use the linking theorem for the strongly indefinite functional and the notion of the suitable version of the Palais-Smale condition.