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THE INVESTIGATION OF MULTIPLICATION OF

SUSPENSION BRIDGE EQUATION USING LINKING

THEORY

Hyewon Nam

Abstract. It is well known that a suspension bridge may display
certain oscillations under external aerodynamic forces. Under the
action of a strong wind, in particular, a narrow and very flexible sus-
pension bridge can undergo dangerous oscillations. So it would be
very contributive to determine under what conditions a similar situ-
ation cannot occur, and find out safe parameters of the bridge con-
struction. In this paper, we investigate relations between the mul-
tiplicity of solutions and nonlinear terms in this suspension bridge
equation using critical point theorem and linking theorem.

1. Introduction

One of the most problematic and not fully explained areas of mathe-
matical modelling involves nonlinear dynamical systems, especially sys-
tems with the so called jumping nonlinearity. It can be seen that its
presence brings unexpected difficulties into the whole problem and very
often it is a cause of multiplicity of solutions. A suspension bridge is an
example of such a dynamical system.

The collapse of the Tacoma Narrows suspension bridge caused by a
wind blowing at a speed of 42 miles per hour in the State of Washington
on November 7, 1940, is one of the most striking examples [2]. So it
would be very contributive to determine under what conditions a sim-
ilar situation cannot occur, and find out safe parameters of the bridge
construction.

The nonlinear aspect is caused by the presence of supporting cable
stays, which restrain the movement of the center span of the bridge in a
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downward direction, but have no influence on its behavior in the opposite
direction. The model describing oscillations in suspension bridge was
suggested by McKenna and Walter [7]. The model is described by the
nonlinear partial differential equation

utt + α2uxxxx + βut + κu+ = W (x) + εf ∗(x, t),

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0,(1)

u(x, t + 2π) = u(x, t), −∞ < t < ∞, x ∈ (0, π),

where α2 = EI
m

(π )4 6= 0 and β = b
m

> 0. Under an additional assumption
α = 1, McKenna and Walter consider the case when the damping term
is equal to zero. Then the equation (1) is transformed to the following
form :

utt + uxxxx + bu+ = f(x, t, u), in (−π

2
,
π

2
)× R,

u(±π

2
, t) = uxx(±π

2
, t) = 0,(2)

u is π-periodic in t and even in x and t,

where u+ = max{u, 0}.
In this thesis, we investigate the existence of solutions of beam equa-

tion for research of the system with wave equation and beam equation.
In [1], Nam and Choi consider the asymmetric beam equation where the
nonlinear term is a functions with different powers. In that paper, f is
defined by

f(x, t, s) =

{ |s|p−2s, s ≥ 0,
|s|q−2s, s < 0,

where p, q > 2 and p 6= q. In this paper, we consider the nonlinear term
defined by

f(x, t, s) =

{ |s|p−2s, s ≥ 0,
s, s < 0,

(3)

where p > 2.
In this paper, we use a variational approach and look for critical points

of a suitable functional I on a Hilbert space H. Since the functional is
strongly indefinite, it is convenient to use the notion of linking. In Sec-
tion 2, we find a suitable functional I on a Hilbert space H and prove the
suitable version of the Palais-Smale condition for the topological method.
In Section 3, we study the geometry of the sub-levels of I and find two
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linking type inequalities, relative to two different decompositions of the
space H.

2. The Palais-Smale condition

To begin with, we consider the associated eigenvalue problem

utt + uxxxx = λu, in (−π

2
,
π

2
)× R,

u(±π

2
, t) = uxx(±π

2
, t) = 0,(4)

u(x, t) = u(−x, t) = u(x,−t) = u(x, t + π).

A simple computation shows that equation (4) has infinitely many eigen-
values λmn and the corresponding eigenfunctions φmn given by

λmn = (2n + 1)4 − 4m2,

φmn(x, t) = cos 2mt cos(2n + 1)x, (m,n = 0, 1, 2, · · · ).
Let Q be the square [−π

2
, π

2
] × [−π

2
, π

2
] and H the Hilbert space defined

by
H = {u ∈ L2(Q)|u is even in x and t}.

Then the set {φmn|m,n = 0, 1, 2, · · · } is an orthogonal base of H and H
consists of the functions

u(x, t) =
∞∑

m,n=0

amnφmn(x, t)

with the norm given by

‖u‖2 =

∫

Ω

u2(x, t)dxdt.

We denote by (Λ−i )i≥1 the sequence of the negative eigenvalues of
equation (4), by (Λ+

i )i≥1 the sequence of the positive ones, so that

· · · < Λ−1 = −3 < Λ+
1 = 1 < Λ+

2 = 17 < · · · .

We consider an orthonormal system of eigenfunctions {e−i , e+
i , i ≥ 1}

associated with the eigenvalues {Λ−i , Λ+
i , i ≥ 1}. We set

H+ = closure of span{eigenfunctions with eigenvalue ≥ 0},
H− = closure of span{eigenfunctions with eigenvalue ≤ 0}.

We define the linear projections P− : H → H−, P+ : H → H+.
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We also introduce two linear operators R : H → H+, S : H → H− by

S(u) =
∞∑
i=1

a−i e−i√
−Λ−i

, R(u) =
∞∑
i=1

a+
i e+

i√
Λ+

i

if

u =
∞∑
i=1

a−i e−i +
∞∑
i=1

a+
i e+

i .

It is clear that S and R are compact and self adjoint on H.

Definition 2.1. Let Ib : H → R be defined by

Ib(u) =
1

2
‖P+u‖2 − 1

2
‖P−u‖2 +

b

2
‖[Au]+‖2 −

∫

Ω

F (Au)dxdt,

where A = R + S and F (s) =
∫ s

0
f(x, t, τ)dτ .

It is straightforward that

∇Ib(u) = P+u− P−u + bA(Au)+ − Af(x, t, Au).

Following the idea of Hofer (see [5]) one can show that

Proposition 2.2. Ib ∈ C1,1(H,R). Moreover ∇Ib(u) = 0 if and only
if w = (R + S)(u) is a weak solution of (2), that is,∫

Ω

(w(vtt + vxxxx) + b[w]+v)dxdt =

∫

Ω

f(x, t, w)vdxdt for all smooth v ∈ H.

The following theorem is the uniqueness result for problem (2).

Proposition 2.3. b < −Λ+
1 and

f(x, t, s) =

{ |s|p−2s, s ≥ 0
0, s ≤ 0,

then problem (2) has only trivial solution.

Proof. Let Lu = utt + uxxxx and we rewrite (2) as

Lu− Λ+
1 u = f(x, t, u)− Λ+

1 u− bu+

= (u+)p−1 − Λ+
1 u− bu+

= (u+)p−1 − (Λ+
1 + b)u+ + Λ+

1 u−.

Multiplying across by e+
1 and integrating over Ω,

0 = < [L− Λ+
1 ]u, e+

1 >

=

∫

Ω

[(u+)p−1 − (Λ+
1 + b)u+ + Λ+

1 u−]e+
1 dx ≥ 0,
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since the condition b < −Λ+
1 imply that −(Λ+

1 + b)u+ ≥ 0, (u+)p−1 ≥ 0,
and Λ+

1 u− ≥ 0 for all real valued function u. and e+
1 (x) > 0 for all

(x, t) ∈ Ω. Therefore the only possibility to hold (2) is that u ≡ 0. ¤

Remark 2.4. b < −Λ+
1 and f is defined by equation (3), then problem

(2) has no positive solutions.

In this section, we suppose b > −Λ−1 . Under this assumption, we have
a concern with multiplicity of solutions of equation (2). Here we suppose
that f is defined by equation (3).

In the following, we consider the following sequence of subspaces of
L2(Ω) :

Hn = (⊕n
i=1HΛ−i

)⊕ (⊕n
i=1HΛ+

i
)

where HΛ is the eigenspace associated to Λ.

Lemma 2.5. The functional Ib satisfies (P.S.)∗γ condition, with respect
to (Hn), for all γ.

Proof. Let (kn) be any sequence in N with kn → ∞. And let (un)
be any sequence in H such that un ∈ Hn for all n, Ib(un) → γ and
∇(Ib) |Hkn

(un) → 0.
First, we prove that (un) is bounded. By contradiction let tn =

‖un‖ → ∞ and set ûn = un/tn. Up to a subsequence ûn ⇀ û in H
for some û in H. Moreover

0 ← < ∇(Ib) |Hkn
(un), ûn > − 2

tn
Ib(un)

=
2

tn

∫

Ω

F (Aun)dxdt− 1

tn

∫

Ω

f(x, t, Aun)Aundxdt

=

∫

Ω

−p− 2

p
(tn)p−1[(Aûn)+]p + 2(tn)[(Aûn)−]2dx.

Since tn →∞, (Aûn)+ → 0 and (Aûn)− → 0. This implies Aû = 0 and
û = 0, a contradiction.

So (un) is bounded and we can suppose un ⇀ u for some u ∈ H. We
know that

∇(Ib) |Hkn
(un) = P+un − P−un + bA(Aun)+ − Af(x, t, Aun).

Since A is the compact operator, P+un−P−un converges strongly, hence
un → u strongly and ∇Ib(u) = 0. ¤
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3. An Application of Linking Theory

Fixed Λ−i and Λ−i < −b < Λ−i−1. We prove the Theorem via a linking
argument.

3.1. The First Splitting of Space H. First of all, we introduce a
suitable splitting of the space H. Let

Z1 = ⊕∞j=i+1HΛ−j
, Z2 = HΛ−i

, Z3 = ⊕i−1
j=1HΛ−j

⊕H+

Lemma 3.1. There exists R such that supv∈Z1⊕Z2,‖v‖=R Ib(v) ≤ 0.

Proof. Suppose that v ∈ Z1 ⊕ Z2. Then we express that v =∑∞
j=i a

−
j e−j . Hence Sv =

∑∞
j=i

a−jq
−Λ−j

e−j and S[Sv] =
∑∞

j=i

a−j
−Λ−j

e−j . And

then

Ib(v) = −1

2
‖v‖2 +

b

2
‖[Sv]+‖2 −

∫

Ω

F (Sv)dxdt.

Since Λ−i < −b < Λ−i−1,

b

2
‖[Sv]+‖2 ≤ b

2
‖Sv‖2 =

b

2
< Sv, Sv >=

b

2
< S[Sv], v >

=
b

2

∞∑
j=i

a−j
2

−Λ−j
≤ b

2

∞∑
j=i

a−j
2

−Λ−i
≤ b

2

∞∑
j=i

a−j
2

b
=

1

2
‖v‖2

We know that∫

Ω

F (Sv)dxdt =

∫

Ω

(
1

p
([Sv]+)p +

1

2
([Sv]−)2

)
dxdt.

Since −1
2
‖v‖2 + b

2
‖[Sv]+‖2 ≤ 0 and − ∫

Ω
F (Sv)dx ≤ 0, there exists R

such that Ib(v) ≤ 0 for all ‖v‖ = R. ¤
Lemma 3.2. There exists R1 > R such that supv∈Z1,‖v‖≤R1

Ib(v) ≤ 0.

Proof. Repeating the same arguments used in Lemma3.1, we get the
conclusion. ¤

Lemma 3.3. There exists ρ such that infu∈Z2⊕Z3,‖u‖=ρ Ib(u) > 0.

Proof. Let σ ∈ [0, 1]. We consider the functional Ib,σ : Z2 ⊕ Z3 → R
defined by

Ib,σ(u) =
1

2
‖P+u‖2 − 1

2
‖P−u‖2 +

b

2
‖[Au]+‖2 − σ

∫

Ω

F (Au)dxdt.
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We claim that there exists a ball Bρ = {u ∈ Z2⊕Z3|‖u‖ < ρ} such that

1. Ib,σ are continuous with respect to σ,
2. Ib,σ satisfies (P.S) condition,
3. 0 is a minimum for Ib,0 in Bρ,
4. 0 is the unique critical point of Ib,σ in Bρ.

Then by a continuation argument of Li-Szulkin’s (see[6]), it can be
shown that 0 is a local minimum for Ib|Z2⊕Z3

= Ib,1 and Lemma is proved.
The continuity in σ and the fact that 0 is a local minimum for Ib,0

are straightforward. To prove (P.S.) condition one can argue as in the
previous Lemma, when dealing with Ib.

To prove that 0 is isolated we argue by contradiction and suppose
that there exists a sequence (σn) in [0, 1] and sequence (un) in Z2 ⊕ Z3

such that (σn) → 0, ∇Ib,σn(un) = 0 for all n, un 6= 0, andun → 0. Set
tn = ‖un‖ and ûn = un/tn then tn → 0. Let v̂n = P−ûn and ŵn = P+ûn.
Since v̂n varies in a finite dimensional space, we can suppose that v̂n → v̂
for some v̂. We get

(5)
1

tn
∇Ib,σn(un) = ŵn − v̂n +

b

tn
A(Aun)+ − σn

tn
Af(Aun) = 0.

Multiplying by ŵn yields

‖ŵn‖2 =
σn

tn

∫

Ω

f(Aun)Aŵndxdt− b

tn

∫

Ω

(Aun)+Aŵndxdt.

We know that∫

Ω

(Aun)+Aŵndxdt =

∫

Ω

P+(Aun)+Aûndxdt

=

∫

Ω

P+(Aun)+(Aûn)+dxdt.

Since b > 0, there exists a sequence (εn) such that εn → 0 and 0 < εn < b
for all n. That is

b

tn

∫

Ω

(Aun)+Aŵndxdt ≥ εn

tn

∫

Ω

P+(Aun)+(Aûn)+dxdt.

Then

‖ŵn‖2 ≤ σn

tn

∫

Ω

f(Aun)Aŵndxdt− εn

tn

∫

Ω

P+(Aun)+(Aûn)+dxdt

≤ σn

∫

Ω

|f(Aun)|
tn

|Aŵn|dxdt + εn

∫

Ω

|P+(Aûn)+||(Aûn)+|dxdt.
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Since A is a compact operator

|f(Aun)| = |{([tnAûn]+)p−1 − ([tnAûn]−)}|
≤ tn

p−1|[Aûn]+|p−1 + tn|[Aûn]−|
≤ tn(M1 + tn

p−2M2)

for some M1 and M2. We get that

σn

tn
|f(Aun)| ≤ σn

tn
tn(M1 + tn

p−2M2) ≤ σn(M1 + tn
p−2M2) ≤ o(1),

and

σn

∫

Ω

|f(Aun)|
tn

|Aŵn|dxdt ≤ σn(M1 + tn
p−2M2)

∫

Ω

|Aŵn|dxdt ≤ o(1).

Hence

(6) ‖ŵn‖2 ≤ o(1) + εn

∫

Ω

|P+(Aûn)+||(Aûn)+|dxdt.

Since
∫
Ω
|P+(Aûn)+||(Aûn)+|dxdt is bounded and equation (6) holds

ŵn → 0 and so (ûn) converges. Since σn

tn
|f(Aun)| ≤ o(1), we get

σn

tn
Af(Aun) → 0. From equation (5), −v̂ + bA(Av̂)+ = 0 and so v̂ =

bA(Av̂)+ ≥ 0. Thus (v̂)− = 0 and (v̂)+ = bA(Av̂)+. Multiplying by
e−j (1 ≤ j ≤ i) yields

a−i =< v̂, e−j >= b

∫

Ω

(Av̂)+(Ae−j )dxdt

=
b√
−Λ−j

∫

Ω

(Av̂)+(e−j )dxdt =
b

−Λ−j
a−i

and so a−j ( b
−Λ−j

− 1) = 0. Since b 6= −Λ−j , a−j = 0 for all j = 1, 2, · · · and

so (v̂n) converges to zero, but this is impossible if ‖ ˆ(un)‖ = 1. ¤

Definition 3.4. Let H be an Hilbert space, Y ⊂ H, ρ > 0 and
e ∈ H \ Y , e 6= 0. Set:

Bρ(Y ) = {x ∈ Y | ‖x‖ ≤ ρ},
Sρ(Y ) = {x ∈ Y | ‖x‖ = ρ},

4ρ(e, Y ) = {σe + v | σ ≥ 0, v ∈ Y, ‖σe + v‖ ≤ ρ},
Σρ(e, Y ) = {σe + v | σ ≥ 0, v ∈ Y, ‖σe + v‖ = ρ} ∪ {v | v ∈ Y, ‖v‖ ≤ ρ}.
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Theorem 3.5. If Λ−i < −b < Λ−i−1 then problem (2) has at least one
nontrivial solution.

Proof. Let e ∈ Z2. By Lemma 3.1, Lemma 3.2, and Lemma 3.3, for a
suitable large R and a suitable small ρ, we have the linking inequality

sup Ib(ΣR(e, Z1)) < inf Ib(Sρ(Z2 ⊕ Z3)).(7)

Moreover (P.S.)∗γ holds. By standard linking arguments, it follows that
there exists a critical point u for Ib with α ≤ Ib(u) ≤ β, where α =
inf Ib(Sρ(Z2 ⊕ Z3)) and β = sup Ib(∆R(e, Z1)). Since α > 0, then u 6= 0.
¤

3.2. The Second Splitting of Space H. We assume in this section
that i ≥ 2 and we set

W1 = ⊕∞j=iHΛ−j
,W2 = ⊕i−1

j=1HΛ−j
,W3 = H+.

Notice that W1 = Z1 ⊕ Z2 and W2 ⊕W3 = Z3.

Lemma 3.6. lim inf‖u‖→+∞,u∈W1⊕W2 Ib(u) ≤ 0.

Proof. Let (un)n be a sequence in W1⊕W2 such that ‖un‖ → ∞. We
set tn = ‖un‖ and ûn = un/tn. Since S is a compact operator,

b

2

‖[Sun]+‖2

t2n
−

∫

Ω

F (Sun)

t2n
dxdt

=

∫

Ω

b

2
([Sûn]+)2 − tn

p−2

p
([Sûn]+)p − 1

2
([Sûn]−)2dxdt

→ −∞.

Then

Ib(un)

‖un‖2
= −1

2
+

b

2

‖[Sun]+‖2

t2n
−

∫

Ω

F (Sun)

t2n
dxdt → −∞.

Hence

lim inf
‖u‖→+∞,u∈W1⊕W2

Ib(u) ≤ 0.

¤
Lemma 3.7. There exists ρ̂ such that inf Ib(Sρ̂(W2 ⊕W3)) > 0.

Proof. Repeating the same arguments used in Lemma 3.2, we get the
conclusion. ¤
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Theorem 3.8. Let i ≥ 2. If Λ−i < −b < Λ−i−1 then problem (2) has
at least two nontrivial solution.

Proof. Using the conclusion of Theorem 3.5, we have that there exist
a nontrivial critical point u with

Ib(u) ≤ sup Ib(∆R(e, Z1))

where R, R1, e were given in Lemma 3.1, Lemma 3.2 and 3.5. We can
choose that R1 ≥ R̂ ≥ R. Take any ê in W2, then we have a second
linking inequality,

sup Ib(ΣR̂(ê,W1)) ≤ inf Ib(Sρ̂(W2 ⊕W3)).

Since (P.S.)∗γ holds, there exists a critical point û such that

inf Ib(Sρ̂(W2 ⊕W3)) ≤ Ib(û) ≤ sup Ib(∆R̂(ê,W1)).

Since R̂ ≥ R and Z1 ⊕ Z2 = W1,

∆R(e, Z1) ⊂ BR̂(W1) ⊂ ΣR̂(ê,W1).

Then

Ib(u) ≤ sup Ib(∆R(e, Z1))

≤ sup Ib(ΣR̂(ê,W1)) < inf Ib(Sρ̂(W2 ⊕W3)) ≤ Ib(û).

Hence u 6= û. ¤
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