• 제목/요약/키워드: Linearized model

검색결과 427건 처리시간 0.025초

화력 발전용 3차 비선형 보일러 시스템 모델의 선형화 모델 분석 (Linearized Model Analysis of Nonlinear Thermal Power Boiler System)

  • 김우근;권현태;문운철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.366-368
    • /
    • 2004
  • This paper presents analysis of linear model boiler-turbie system model of Bell and Astrom. The 3rd order nonlinear model is linearlized and the linearized models of several operating points are presented. The analysis results show that the linearlized model is relatively reliable except the dynamics of electric output and drum level. Therefore, a caution is necessary in controller design based on the linearlized model.

  • PDF

근사 비선형 궤환 선형화를 이용한 도립 진자 계통의 제어 (The Control of Inverted Pendulum System Using Approximated Nonlinear Feedback Linearization)

  • 이종용;이상효
    • 한국통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.372-384
    • /
    • 1993
  • 로보트 제어와 로케트의 자세 제어에 관련하여 도립 진자 시스템은 제어 이론과 응용면에서 흥미 있는 문제이다. 일반적으로 도립 진자 시스템을 제어하기 위하여 소신호 모델에 의한 근사화 모델이 사용되었다. 본 논문에서는 미분 다양체 이론을 기초로 한 비선형 제어 이론을 도입 진자 시스템에 적용하고자 한다. 먼저 비선형 모델을 비선형 상태 궤환을 이용하여 근사 선형화 모델로 변환시키고, 선형화 모델에 극점 배치를 통하여 선형 제어기를 설계하였다. 컴퓨터 시뮬레이션을 통하여 제안된 기법을 Tayler 급수의 3차 선형화모델과 비교하였다.

  • PDF

A Linearized Transmission Model Based Market Equilibrium In Locational Pricing Environments

  • Joung, Man-Ho;Kim, Jin-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.494-499
    • /
    • 2007
  • In this paper, we have investigated how transmission network constraints can be modeled in an electricity market equilibrium model. Under Cournot competition assumption, a game model is set up considering transmission line capacity constraints. Based on locational marginal pricing principle, market clearing is formulated as a total consumers# benefit maximization problem, and then converted to a conventional optimal power flow (OPF) formulation with a linearized transmission model. Using market clearing formulation, best response analysis is formulated and, finally, Nash equilibrium is formulated. In order for illustration, a numerical study for a four node system with two generating firms and two loads are presented.

역모델을 이용한 MR 댐퍼의 감쇠계수 제어 (Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

Enhancement of Power System Dynamic Stability by Designing a New Model of the Power System

  • Fereidouni, Alireza;Vahidi, Behrooz
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.379-389
    • /
    • 2014
  • Low frequency oscillations (LFOs) are load angle oscillations that have a frequency between 0.1-2.0 Hz. Power system stabilizers (PSSs) are very effective controllers in improvement of the damping of LFOs. PSSs are designed by linearized models of the power system. This paper presents a new model of the power system that has the advantages of the Single Machine Infinite Bus (SMIB) system and the multi machine power system. This model is named a single machine normal-bus (SMNB). The equations that describe the proposed model have been linearized and a lead PSS has been designed. Then, particle swarm optimization technique (PSO) is employed to search for optimum PSS parameters. To analysis performance of PSS that has been designed based on the proposed model, a few tests have been implemented. The results show that designed PSS has an excellent capability in enhancing extremely the dynamic stability of power systems and also maintain coordination between PSSs.

Application of Model Based Predictive Control with Kalman Filter to Natural Circulation Water Tube Boiler

  • Kim, Tae-Shin;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1146-1151
    • /
    • 2005
  • This paper deals with the control problem of a natural circulation water tube boiler with constraint conditions. Some linearized models for the water tube boiler are proposed around some operating points, and the model based predictive control law is adopted to control the plant accounting for constraints. In this controller, the Kalman filter is used for the state estimation, and the controller is designed based on the linearized model. The control performance of the designed controller is exemplified via some nonlinear simulations around the operation point, which show it works well.

  • PDF

Brinkman Penalization Method를 통한 복잡한 3D 형상 주위의 음향 전파 연구 (COMPUTATION OF SOUND SCATTERING IN 3D COMPLEX GEOMETRY BY BRINKMAN PENALIZATION METHOD)

  • 이소현;이진범;김종욱;문영준
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.103-109
    • /
    • 2012
  • Sound scattering in 3D complex geometry is difficult to model with body-fitted grid. Thus Brinkman Penalization method is used to compute sound scattering in 3D complex geometry. Sound propagation of monitor/TV is studied. The sound field for monitor/TV is simulated by applying Brinkman Penalization method to Linearized Euler Equation. Solid Structure and ambient air are represented as penalty terms in Linearized Euler Equation.

적응 입출력 선형화 기법을 이용한 Brushless DC Motor의 강인한 속도 제어 (Robust Speed Control of Brushless DC Motor Using Adaptive Input-Output Linearization Technique)

  • 김경화;백인철;문건우;윤명중
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.89-96
    • /
    • 1997
  • A robust speed control scheme for a brushless DC(BLDC) motor using an adaptive input-output linearization technique is presented. By using this technique, the nonlinear motor model can be linearized in Brunovski canonical form, and the desired speed dynamics can be obtained based on the linearized model. This control technique, however, gives an undesirable output performance under the mismatch of the system parameters and load conditions. For the robust output response, the controller parameters will be estimated by a model reference adaptive technique where the disturbance torque and flux linkage are estimated. The adaptation laws are derived by the Popov's hyperstability theory and positivity concept. The proposed control scheme is implemented on a BLDC motor using the software of DSP TMS320C30 and the effectiveness is verified through the comparative experiments.

  • PDF

내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석 (Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid)

  • 박종환;이우식
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.