• 제목/요약/키워드: Linearized model

검색결과 427건 처리시간 0.026초

Integrated Generation and Transmission Expansion Planning Using Generalized Bender’s Decomposition Method

  • Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2228-2239
    • /
    • 2015
  • A novel integrated optimization method based on the Generalized Bender’s Decomposition (GBD) is proposed to combine both generation and transmission expansion problems. Most of existing researches on the integrated expansion planning based on the GBD theory incorporate DC power flow model to guarantee the convergence and improve the computation time. Inherently the GBD algorithm based on DC power flow model cannot consider variables and constraints related bus voltages and reactive power. In this paper, an integrated optimization method using the GBD algorithm based on a linearized AC power flow model is proposed to resolve aforementioned drawback. The proposed method has been successfully applied to Garver’s six-bus system and the IEEE 30-bus system which are frequently used power systems for transmission expansion planning studies.

Feedback Linearization Control of the Looper System in Hot Strip Mills

  • Hwang, I-Cheol;Kim, Seong-Bae
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1608-1615
    • /
    • 2003
  • This paper studies on the linearization of a looper system in hot strip mills, that plays an important role in regulating a strip tension or a strip width. Nonlinear dynamic equations of the looper system are analytically linearized by a static feedback linearization algorithm with a compensator. The proposed linear model of the looper is validated by a comparison with a linear model using Taylor's series. It is shown that the linear model by static feedback well describes nonlinearities of the looper system than one using Taylor's series. Furthermore, it is shown from the design of an ILQ controller that the linear model by static feedback is very useful in designing a linear controller of the looper system.

고속 롤투롤 인쇄기의 장력제어시스템 안정도 해석 (Stability Analysis of the Tension Control System of a High-speed Roll-to-Roll Printing Machine)

  • 강철구;이봉주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.873-878
    • /
    • 2007
  • Stability of high-speed roll-to-roll printing machines is one of the most important factors that are required for the printing machines to operate properly and to obtain reasonable printing performance. This paper proposes a new model for the web-tension system of a high-speed gravure printing machine considering span-length variations due to dancer rollers, and analyzes the stability of plant dynamics of the printing machine using the proposed model. Span-length variations due to dancer motions are considered for the modeling of plant dynamics in two ways; one is to include the effect of span-length variations without considering dancer inertias and viscous frictions, and the other is to include the effect of span-length variations with considering dancer inertias and viscous frictions. The stability of the plant model is analyzed for various web-speeds using the eigenvalues of the linearized model about operating points.

  • PDF

고속 오차수정계산법의 사용에 의한 상정사고 해석법 (개선된 PQ 분리 등가회로를 이용한 고속상정사고 해석법) (A method for contingency analysis by using fast correction method of errors)

  • 송길영;김영한;최상규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.184-188
    • /
    • 1989
  • This paper presents a fast realistic method based on a P-Q decoupled linearized model for contingency analysis. This method involves new idea to correct the errors caused by neglecting the resistance of transmission lines and/or by linearizing the model. The idea is to use fast correction method of errors by the principle of superposition for compensating these errors. Results demonstrating the effectiveness of the method on 25-bus model system and IEEE30-model system are presented

  • PDF

온라인 여자제어시스템 모델과 SQP법을 이용한 AVR의 파라미터 튜닝 방법에 관한 연구 (A New Optimal AVR Parameter Tuning Method Using On-Line Excitation Control System Model with SQP Method)

  • 김중문;문승일
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권3호
    • /
    • pp.118-126
    • /
    • 2002
  • AVR parameter tuning for voltage control of generators has generally been done with the off-line open-circuit model of the synchronous generator. When the generator is connected on-line and operating with load the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning for on line conditions using SQP(Sequential Quadratic Programming) meshed with frequency response characteristics of linearized on-line system model. As the proposed method uses the un - line system model the tuned parameter sets show more optimal behavior in the on-line operating conditions. furthermore, as this method considers the performance indices that are needed for stable operation as constraints, AVR parameter sets that are tuned by this method could guarantee the stable performance, too.

LuGre 모델에 기반한 펜듀봇의 마찰력 보상 (Friction Compensation of the Pendubot based on the LuGre Model)

  • 엄명환;김철중;좌동경
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.848-855
    • /
    • 2011
  • This paper proposes a method to reduce the limit cycle phenomenon that appears in the steady-state response of a pendubot system, when it is controlled by a state feedback controller based on the linearized system model. For this, we employed the compensator which estimates the friction based on the LuGre model in the LQR control. The proposed compensation method is validated by experiments for a pendubot system, which shows that the external disturbance as well can be efficiently compensated.

Leader-Following Control System Design for a Towed Vessel by Tugboat

  • Quan, Tran Duc;Suh, Jin-Ho;Kim, Young-Bok
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.462-469
    • /
    • 2019
  • In this study, a motion control problem for the vessels towed by tugboats or towing ships on the sea is considered. The towed vessels, such as barge ships, are used for several purposes. Generally, these vessels have no power propulsion system and are towed using ropes and towing vessel (tugboats). The basic mathematical model of the towed vessel in which three active rudders are attached was introduced from a previous study. Owing to the dependency of the motions of the towed vessel to the towing ship, a method is suggested to cope with the undesirable disturbance and improve the tracking performance. For the simulation study, a model of the towed vessel with a towing ship is made, and necessary physical parameters are identified from the experiment. For the defined and linearized model, a control system is designed, and the control performance is also evaluated. A simulation study is conducted and the effectiveness of the proposed control strategy is verified.

Adaptive control of gas metal arc welding process

  • Song, Jae-Bok;Hardt, David-E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.191-196
    • /
    • 1993
  • Since the welding process is complex and highly nonlinear, it is very difficult to accurately model the process for real-time control. In this paper, a discrete-time transfer function matrix model for gas metal arc welding process is proposed. Although this linearized model is valid only around the operating point of interest, the adaptation mechanism employed in the control system render this model useful over a wide operating range. A multivariable one-step-ahead adaptive control strategy combined with a recursive least-squares method for on-line parameter estimation is implemented in order to achieve the desired weld bead geometries. Command following and disturbance rejection properties of the adaptive control system for both SISO and MIMO cases are investigated by simulation and experiment.

  • PDF

Mechatronic Control Model of the Wind Turbine with Transmission to Split Power

  • Zhang Tong;Li Wenyong;Du Yu
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.533-541
    • /
    • 2005
  • In this paper, a wind turbine with power splitting transmission, which is realized through a novel three-shaft planetary, is presented. The input shaft of the transmission is driven by the rotor of the wind turbine, the output shaft is connected to the grid via the main generator (asynchronous generator), and the third shaft is driven by a control motor with variable speed. The dynamic models of the sub systems of this wind turbine, e.g. the rotor aerodynamics, the drive train dynamics and the power generation unit dynamics, were given and linearized at an operating point. These sub models were integrated in a multidisciplinary dynamic model, which is suitable for control syntheses to optimize the utilization of wind energy and to reduce the excessive dynamic loads. The important dynamic behaviours were investigated and a wind turbine with a soft main shaft was recommend.

Stability Analysis of a Multi-Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong;Ko, Jeong-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1072-1077
    • /
    • 2004
  • This paper provides a new approach to analyze the stability of a general multi-link TCP Vegas, which is a kind of feedback-based congestion algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium pints, this approach models a multi-link TCP Vegas network in the form of a piecewise linear multiple time-delay system. And then, based on the exactly characterized dynamic model, this paper presents a new stability criterion via a piecewise and multiple delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs).

  • PDF