• 제목/요약/키워드: Linearized Error

검색결과 101건 처리시간 0.021초

유한요소법을 이용한 해수유동 해석 (I) (Analysis of Tidal Flow Using the Frequency Domain Finite Element Method (I))

  • 권순국;고덕구;조국광;김준현
    • 한국농공학회지
    • /
    • 제33권4호
    • /
    • pp.73-83
    • /
    • 1991
  • A numerical simulation of a 2-dimensional tidal flow in a shallow sea was performed using the frequency domain finite element method. In this study, to overcome the inherent problems of a time domain model which requires high eddy viscosity and small time steps to insure numerical stability, the harmonic function incorporated with the linearized function of governing equations was applied. Calculations were carried out using the developed tidal model(TIDE) in a rectangular channel of lOm(depth) X 4km (width) X 25km(length) under the condition of tidal waves entering the channel closed at one end for both with and without bottom friction damping. The predicted velocities and water levels at different points of the channel were in close agreement with less than 1 % error between the numerical and analytical solutions. The results showed that the characteristics of the tidal flow were greatly affected by the magnitude of tidal elevation forcing, and not by on surface friction, wind, or the linear bottom friction when the value was less than 0.01. For the optimum size of grid to obtain a consistent solution, the ratio between the length of the maximum grid and the tidal wave length should be less than 0.0018. It was concluded that the finite element tidal model(TIDE) developed in this study could handle the numerical simulation of tidal flows for more complex geometrical conditions.

  • PDF

새로운 행렬 분할법을 이용한 최적 무효전력/전압 제어 (OPTIMAL REACTIVE POWER AND VOLTAGE CONTROL USING A NEW MATRIX DECOMPOSITION METHOD)

  • 박영문;김두현;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.202-206
    • /
    • 1989
  • A new algorithm is suggested to solve the optimal reactive power control(optimal VAR control) problem. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the bus voltages and the operating limits of control variables- the transformer tap positions, generator terminal voltages and switchable reactive power sources. The method developed herein employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the system losses and the system performance sensitivities relating dependent and control variables. The algorithm consists of two modules, i.e. the Q-V module for reactive power-voltage control, Load flow module for computational error adjustments. In particular, the acceleration factor technique is introduced to enhance the convergence property in Q-module, The combined use of the afore-mentioned two modules ensures more effective and efficient solutions for optimal reactive power dispatch problems. Results of the application of the method to the sample system and other worst-case system demonstrated that the algorithm suggested herein is compared favourably with conventional ones in terms of computation accuracy and convergence characteristics.

  • PDF

자동화 비행시험기법에 의한 소형 무인헬리콥터의 파라메터 추정 (Parameter Estimation of a Small-Scale Unmanned Helicopter by Automated Flight Test Method)

  • 방극희;김낙완;홍창호;석진영
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.916-924
    • /
    • 2008
  • In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.

점소성 구성식의 적분에 미치는 선형화 방법의 영향 (Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity)

  • 윤삼손;이순복
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

PID 제어 기술을 이용한 비선형 유압 시스템의 강인 제어 (Robust Control of the Nonlinear Hydraulic Servo System Using a PID Control Technique)

  • 유삼현;이종원
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.850-856
    • /
    • 2001
  • Even though the hydraulic servo system has been widely used in industrial and military equipments since it has a lot of advantages, it is not easy to design controller due to the high nonlinearities and the parametric uncertainties. The dynamic behavior of the real process in the hydraulic servo system differs from that described by its model because the model is linearized. Another reason of the difference is caused by the variety of parameters, since the system parameters of the dynamic equation are affected by the operating conditions such as temperature and pressure. In this study, the designing process of the MRNC with a PID compensator is introduced and applied to the load sensing hydraulic servo system. The results show that the designed controller guarantees the robust control performance despite of both the nonlinearities and the parametric uncertainties.

센서의 설치 오차에 따른 자기베어링 지지 로터계의 안정도에 관한 연구 -비선형 자기력 모델에 대한 고찰- (A Stability Analysis of the Magnetic Bearing System Subject to Sensor dislocation Error -Discussion on Nonlinear Magnetic Force Model-)

  • 정재일;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.799-805
    • /
    • 1996
  • In many cases, the magnetic farce model is linearized at the origin in designing the controller of a magnetic bearing system. However. this linear assumption is violated by the unmodeled nonlinear effect such as sensor dislocation and backup bearing dislocation. Therefore, a direct probe into the nonlinear magnetic force model in an active magnetic bearing system is necessary. To analyze the nonlinear magnetic force model of a magnetic bearing system, phase plot analysis which is to plot the numerical solution of the nonlinear equation in several initial points in the interested region is applied. Phase plot analysis is used to observe a nonlinear dynamic system qualitatively (not quantitatively). With this method, we can get much useful information of the nonlinear system. Among this information, a bifurcation graph that represents stability and locations of fixed points is essential. From the bifurcation graph, a stability criterion of magnetic bearing system is derived.

  • PDF

An Efficient Attitude Reference System Design Using Velocity Differential Vectors under Weak Acceleration Dynamics

  • Lee, Byungjin;Yun, Sukchang;Lee, Hyung-Keun;Lee, Young Jae;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.222-231
    • /
    • 2016
  • This paper proposes a new method achieving computationally efficient attitude reference system for low cost strapdown sensors and microprocessor platform. The main idea in this method is to define and compare velocity differential vectors, geometrically computed from INS and GPS data with different update rate, for generating attitude error measurements which is further used for filter construction. A quaternion based Kalman filter configuration is applied for the attitude estimation with the adapted measurement model of differential vector comparison. Linearized model for Extended Kalman Filter and low pass filtered characteristics of measurement greatly extend the affordability of the proposed algorithm to the field of simple low cost embedded systems. For performance verification, experiment are done employing a practical low cost MEMS IMU and GPS receiver specification. Performance comparison with a high grade navigation system demonstrated good estimation result.

Modified RHKF Filter for Improved DR/GPS Navigation against Uncertain Model Dynamics

  • Cho, Seong-Yun;Lee, Hyung-Keun
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.379-387
    • /
    • 2012
  • In this paper, an error compensation technique for a dead reckoning (DR) system using a magnetic compass module is proposed. The magnetic compass-based azimuth may include a bias that varies with location due to the surrounding magnetic sources. In this paper, the DR system is integrated with a Global Positioning System (GPS) receiver using a finite impulse response (FIR) filter to reduce errors. This filter can estimate the varying bias more effectively than the conventional Kalman filter, which has an infinite impulse response structure. Moreover, the conventional receding horizon Kalman FIR (RHKF) filter is modified for application in nonlinear systems and to compensate the drawbacks of the RHKF filter. The modified RHKF filter is a novel RHKF filter scheme for nonlinear dynamics. The inverse covariance form of the linearized Kalman filter is combined with a receding horizon FIR strategy. This filter is then combined with an extended Kalman filter to enhance the convergence characteristics of the FIR filter. Also, the receding interval is extended to reduce the computational burden. The performance of the proposed DR/GPS integrated system using the modified RHKF filter is evaluated through simulation.

새로운 행렬 분할법을 이용한 최적 무효전력/전압제어 (Optimal Reactive Power and Voltage Control Using A New Matrix Decomposition Method)

  • 박영문;김두현;김재철
    • 대한전기학회논문지
    • /
    • 제39권3호
    • /
    • pp.232-239
    • /
    • 1990
  • A new algorithm is suggested to solve the optimal reactive power and voltage control (optimal VAR control) problem. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the bus voltages and the operating limits of control variables-the transformer tap positions generator terminal voltages and switchable reactive power sources. The method presented herein, using a newly developed Jacobian decomposition method, employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the system losses and the system performance sensitivities relating dependent and control variables. The algorithm consists of two modules, i.e. the Q-V module for reactive power-voltage control, and load flow module for computational error adjustments. In particular the acceleration factor technique is introduced to enhance the convergence property in Q-V module. The combined use of the afore-mentioned two modules ensures more effective and efficient solutions for optimal reactive power dispatch problems. Results of the application of the method to a sample system and other worst-case systems demonstrated that the algorithm suggested herein is compared favourably with conventional ones in terms of computation accuracy and convergence characteristics.

  • PDF

독립형 풍력발전용 PWM 인버터의 출력전압의 비선형 제어 (Nonlinear Control of Output Voltages of PWM Inverters for Stand-Alone Wind Power Generation)

  • 장정익;구성영;이동춘
    • 전력전자학회논문지
    • /
    • 제12권2호
    • /
    • pp.131-138
    • /
    • 2007
  • 본 논문은 출력단에 LC필터를 갖는 3상 PWM 인버터의 출력전압을 일정전압/일정주파수로 제어하기 위한 새로운 비선형 제어기법을 제안한다. 출력 LC필터를 포함한 비선형 모델을 궤환선형화(feedback linearization) 이론을 통하여 선형화하고 선형 제어이론에 기초하여 제어기를 설계한다. 이 제어기는 LC 출력필터를 갖는 PWM 인버터를 사용하는 독립형 풍력발전 시스템에 적용된다. 제안한 제어기법은 정상상태와 부하변동의 과도상태에 대한 실험을 통하여 검증된다.