• Title/Summary/Keyword: Linearization Method

Search Result 484, Processing Time 0.026 seconds

Observers for Nonlinear Systems with Unknown Inputs (미지의 입력을 갖는 비선형 시스템의 관측기)

  • Cho, Hyeon-Seob;Roh, Yong-Gi;Jang, Sung-Whan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.307-310
    • /
    • 2006
  • We consider the problem of constructing observers for nonlinear systems with unknown inputs. It is shown that under some conditions, there exists an observer estimating the states of nonlinear systems with unknown inputs. Nonlinear observer design method using observer error linearization and the design technique of unknown input observer(UIO) for linear systems are used to derive conditions. Some illustrative examples are included. In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller.The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system

  • PDF

Improving the Linearity of CMOS LNA Using the Post IM3 Compensator

  • Kim, Jin-Gook;Park, Chang-Joon;Kim, Hui-Jung;Kim, Bum-Man;Kim, Young-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.91-95
    • /
    • 2007
  • In this paper, a new linearization method has been proposed for a CMOS low noise amplifier(LNA) using the Post IM3 Compensator. The fundamental operating theory of the proposed method is to cancel the IM3 components of the LNA output signal by generating another IM3 components, which are out-phase with respect to that of the LNA, from the Post IM3 Compensator. A single stage common-source LNA has been designed to verify the linearity improvement of the proposed method through $0.13{\mu}m$ RF CMOS process for WiBro system. The designed LNA achieves +7.8 dBm of input-referred 3^{rd}$-order intercept point (IIP3) with 13.2 dB of Power Gain, 1.3 dB of noise figure and 5.7mA @1.5V power consumption. IIP3 is compared with a conventional single stage common-source LNA, and it shows IIP3 is increased by +12.5 dB without degrading other features such as gain and noise figure.

A Stochastic Prediction of Rolling of Ships Using Equivalent Non-linear Method (등가 비선형화 법에 의한 선박 횡요의 확률론적 예측)

  • Sun-Hong Kwon;Jung-Han Chung;Dae-Woong Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.60-65
    • /
    • 1992
  • The roll response of a ship to random beam seas is investigated in terms of the threshold crossing process. The non-white excitation process is modeled as an equivalent white-noise one based on the assumption that the upcrossing properties of the response can be approximately replaced by the excitation with a white noise process with a suitable intensity. Then the non-linear damping is reinstated. The reinstated equation of motion with the equivalent white-noise intensity is solved using the equivalent non-linear method to get the desired probability density function. The proposed scheme is tested extensively with varing coefficients.

  • PDF

Modeling and Design of Zero-Voltage-Switching Controller for Wireless Power Transfer Systems Based on Closed-Loop Dominant Pole

  • Chen, Cheng;Zhou, Hong;Deng, Qijun;Hu, Wenshan;Yu, Yanjuan;Lu, Xiaoqing;Lai, Jingang
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1235-1247
    • /
    • 2019
  • Zero-Voltage-Switching (ZVS) operation for a Wireless Power Transfer (WPT) system can be achieved by designing a ZVS controller. However, the performance of the controller in some industrial applications needs to be designed tightly. This paper introduces a ZVS controller design method for WPT systems. The parameters of the controller are designed according to the desired performance based on the closed loop dominant pole placement method. To describe the dynamic characteristics of the system ZVS angle, a nonlinear dynamic model is deduced and linearized using the small signal linearization method. By analyzing the zero-pole distribution, a low-order equivalent model that facilitates the controller design is obtained. The parameters of the controller are designed by calculating the time constant of the closed-loop dominant poles. A prototype of a WPT system with the designed controller and a five-stage multistage series variable capacitor (MSVC) is built and tested to verify the performance of the controller. The recorded response curves and waveforms show that the designed controller can maintain the ZVS angle at the reference angle with satisfactory control performance.

Actuator multiple control method for greenhouse environment control system (온실 환경 제어시스템을 위한 액추에이터 복합 제어 방법)

  • Son, Kyo-Hoon;Park, Dae-Heon;Kim, Se-Han;Kim, Jae-Hyung;Jeung, Eun-Tae
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.39-45
    • /
    • 2012
  • In recent years the USN(Ubiquitous Sensor Networks) technology has been applied in the greenhouse in order to control temperature and humidity automatically. In this paper, we proposed a control algorithm using feedback linearization techniques based on a mathematical model for temperature and humidity environment. Especially, Control algorithm is presented to the operation of the ventilator affecting on the temperature and humidity system at the same time. The System has been designed taking into account the disturbance(External temperature, soil temperature, external humidity, solar radiation and wind). In conclusion, I will present a way to control multiple actuator through simulations. The proposed control algorithm is validated using the Matlab/Simulink tools.

  • PDF

Nonlinear Control of an Electromagnetic Levitation System Using High-gain Observers for Mmagnetic Bearing Wheels (고이득 관측기를 이용한 자기 베어링 휠용 자기 부상 시스템의 비선형 제어)

  • Choi, Ho-Lim;Shin, Hee-Sub;Koo, Min-Sung;Lim, Jong-Tae;Kim, Yong-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.573-580
    • /
    • 2009
  • In this paper, we develop a functional test model for magnetic bearing wheels. The functional test model is an electromagnetic levitation system that has three degree of freedom, which consists of one axial suspension from gravity and two axes gimbaling capability to small angels. A nonlinear controller with high-gain observers is proposed and the real-time experiment results show that the rotor is accurately levitated at the desired position and well-balanced, which is a suitable result for the potential use an magnetic bearing wheels. Also, the proposed scheme exhibits better performance when it is compared with the conventional PID control method.

Nonlinear Input-Output Feedback Linearizing Control for Power System Stabilization (전력계통 안정화를 위한 비선형 입출력 궤환 선형화 제어기)

  • Kim, Dong-Gun;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.672-674
    • /
    • 2004
  • Many nonlinear controllers for the power system are based on nonlinear models involving the power angle as an element of the state, and therefore the reference value for the power angle is needed. As this reference value is not generally available, it is difficult to apply such nonlinear control methods in practice. To deal with this problem, we present an input-output feedback linearizing control scheme by selecting the output as a combination of the squared voltage and the relative frequency. It is shown that the internal dynamics are locally stable with controllable damping, and that the frequency remains bounded for all time. Simulations illustrate the effectiveness of the proposed method.

  • PDF

Gain scheduled control of magnetic suspension system

  • Kim, Young-Chol;Ryu, Seung-Ki;ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.321-326
    • /
    • 1993
  • A gain scheduling approach for the suspension control of a nonlinear MAGLEV System is presented. We show that this technique is ver useful for improving not only performance to the operational disturbances originating aerodynamic force but also robustness to the uncertainty of payload. As a scheduling variable, even though the external disturbance need to be estimated in real time, but the additive measurement is not required to do it. Some simulations show that the gain scheduling control system performs very well comparing with other method using a nonlinear feedback linearization or a fixed gain linear feedback.

  • PDF

A pole assignment control design for single-input double-output nonlinear mechanical systems

  • Kobayashi, Masahito;Tamura, Katsutoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.144-149
    • /
    • 1993
  • This paper discusses a design of a nonlinear control for a class of single-input double-output nonlinear mechanical systems. When conventional linearization methods are applied to the mechanical systems, some problems of oscillation and unstable phenomena arise. The proposed nonlinear control system resolves these problems. In this design the eigenvalues of the closed-loop nonlinear system are assigned to desired locations and local asymptotic stability of the closed-loop system. is guaranteed. The design method is applied to an inverted pendulum system with a moving weight mechanism. Experimental results show that the proposed nonlinear controller is more effective for stability than the usual linear controller.

  • PDF

Development of a 3-D Unsteady Viscous Flow Solver on Deforming Unstructured Meshes (변형되는 비정렬 격자계를 이용한 삼차원 비정상 점성 유동 계산 기법 개발)

  • Kim J. S.;Kwon O. J.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.52-61
    • /
    • 2004
  • In the present study, a solution algorithm for the computation of unsteady flows on unstructured meshes is presented. Dual time stepping is incorporated to achieve the second-order temporal accuracy while reducing errors associated with linearization and factorization. This allows any time step size, which is suitable for considering physical phenomena of interest. The Gauss-Seidel scheme is used to solve the linear system of equations. A special treatment based on spring analogy is made to handle meshes with high aspect-ratio cells. The present method was validated by comparing the results with experimental data and those obtained from rigid motion.