• Title/Summary/Keyword: Linear transfer

Search Result 1,133, Processing Time 0.033 seconds

A New $H_2$ Bound for $H_{\infty}$ Entropy

  • Zhang, Hui;Sun, Youxian
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.620-625
    • /
    • 2008
  • The $H_{\infty}$ entropy in $H_{\infty}$ control theory is discussed based on investigating information transmission in continuous-time linear stochastic systems. It is proved that the stabilizing feedback does not change the time-average information transmission between system input and output, and the $H_{\infty}$ entropies of open- and closed-loop stable transfer functions are bounded by mutual information rate between input and output in the open-loop system. Furthermore, a new $H_2$ upper bound for $H_{\infty}$ entropy is introduced with a numerical example. Thus the $H_{\infty}$ entropy of a stable transfer function is sandwiched between $H_2$ norms of the original system and a static feedback system.

Optimal Congestion Management Based on Sensitivity in Power System with Wind Farms (민감도를 이용하여 풍력단지가 연계된 송전계통의 최적혼잡처리)

  • Choi, Soo-Hyun;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1965-1970
    • /
    • 2016
  • This paper studies generator rescheduling technique for congestion management in power system with wind farms. The proposed technique is formulated to minimize the rescheduling cost of conventional and wind generators to alleviate congestion subject to operational line overloading. The generator rescheduling method has been used with incorporation of wind farms in the power system. The locations of wind farms are selected based upon power transfer distribution factor (PTDF). Because all generators in the system do not need to participate in congestion management, the rescheduling has been done by generator selection based on the proposed generator sensitivity factor (GSF). The selected generators have been rescheduled using linear programming(LP) optimization techniques to alleviate transmission congestion. The effectiveness of the proposed methodology has been analyzed on IEEE 14-bus systems.

Radiation Biology in Space; DNA Damage and Biological Effects of Space Radiation

  • Ohnishi, Takeo;Takahashi, Akihisa;Ohnishi, Ken
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.37-40
    • /
    • 2002
  • Astronauts are constantly exposed to space radiation at a low-dose rate during long-tenn stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Space radiations contain various kinds of different energy particles, especially high linear energy transfer (LET) particles. Therefore, we have to study the relative biological effectiveness (RBE) of space radiation under microgravity environment which may change RBE from a stress for cells. Furthermore, the research about space radiation might give us useful information about birth and evolution of life on the earth. We also can realize the importance of preventing the ozone layer from depletion by use of exposure equipment to sunlight at International Space Station (ISS).

  • PDF

Filtered-x LMS Algorithm for noise and vibration control system (잡음 및 진동제어시스템을 위한 Filtered -x LMS 알고리즘)

  • kim, soo-yong;Jee, suk-kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.697-702
    • /
    • 2009
  • Filtered-x LMS algorithm maybe the most popular control algorithm used in DSP implementations of active noise and vibration control system. The algorithm converges on a timescale comparable to the response time of the system to be controlled, and is found to be very robust. If the pure tone reference signal is synchronously sampled, it is found that the behavior of the adaptive system can be completely described by a matrix of linear, time invariant, transfer functions. This is used to explain the behavior observed in simulations of a simplified single input, single output adaptive system, which retains many of the properties of the multichannel algorithm.

  • PDF

Improvement of Compressor-Cooling Efficiency Based on Ribs (리브를 활용한 압축기 냉각 효율 향상에 관한 연구)

  • Hwang, Il Sun;Lee, Young Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.70-75
    • /
    • 2021
  • Recently, several efforts have been made to improve the thermal efficiency of a refrigerant compressor. In this study, we attempted to improve energy efficiency ratio (EER) performance by reducing the superheat of the linear compressor. To this end, heat generated inside the compressor must be effectively dissipated. Therefore, heat dissipation was improved by processing ribs in the gap-flow region generated owing to the vibration of the compressor body. The results showed that the convective heat transfer coefficient becomes significantly high when ribs are used, increasing the heat dissipation rate. This helps improve EER by reducing the superheat of the compressor.

DCS Model Calculation for Steam Temperature System

  • Hwang, Jae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1201-1204
    • /
    • 2004
  • This paper suggests a DCS (Distributed Control System) model for steam temperature system of the thermal power plant. The model calculated within sectional range is linear. In order to calculate mathematical models, the system is partitioned into two or three sectors according to its thermal conditions, that is, saturated water/steam and superheating state. It is divided into three sections; water supply, steam generation and steam heating loop. The steam heating loop is called 'superheater' or steam temperature system. Water spray supply is the control input. A first order linear model is extracted. For linear approach, sectional linearization is achieved. Modeling methodology is a decomposition-synthetic technique. Superheater is composed of several tube-blocks. For this block, linear input-output model is to be calculated. Each tiny model has its transfer function. By expanding these block models to total system, synthetic DCS linear models are derived. Control instrument include/exclude models are also considered. The resultant models include thermal combustion conditions, and applicable to practical plant engineering field.

  • PDF

A simple and rapid approach to modeling chromium breakthrough in fixed bed adsorber

  • Chu, Khim Hoong
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 2018
  • A simple mathematical model for predicting fixed bed adsorption dynamics is described. The model is characterized by a linear adsorption isotherm and a linear driving force expression for mass transfer. Its analytic solution can be approximated with an algebraic equation in closed form which is easily evaluated by spreadsheet computation. To demonstrate one application of the fixed bed model, a previously published adsorption system is used as a case study in this work. The adsorption system examined here describes chromium breakthrough in a fixed bed adsorber packed with imidazole functionalized adsorbent particles and is characterized by a nonlinear adsorption isotherm. However, the equilibrium behavior of the fixed bed adsorber is in essence governed by a linear adsorption isotherm due to the use of a low influent chromium concentration. It is shown that chromium breakthrough is predicted reasonably well by the fixed bed model. The model's parameters can be easily extracted from independent batch experiments. The proposed modeling approach is very simple and rapid, and only Excel is used for computation.

Large Area Plasma Characteristics using Internal Linear ICP (Inductively Coupled Plasma) Source for the FPD processing

  • Kim, Kyong-Nam;Lim, Jong-Hyeuk;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.544-547
    • /
    • 2006
  • In this study, the characteristics of large area internal linear ICP sources of $1,020mm{\times}920mm$ (substrate area is $880mm{\times}660mm$) were investigated using a multiple linear antennas with U-type parallel connection. Using the multiple linear antennas with U-type parallel connection, a high plasma density of $2{\times}10^{11}/cm^3$ and a high power transfer efficiency of about 88% could be obtained at 5kW of RF power and with 20mTorr Ar. A low plasma potential of less than 26V and a low electron temperature of $2.6{\sim}3.2eV$ could be also obtained. The measured plasma uniformity on the substrate size of 4th generation $(880mm{\times}660mm)$ was about 4%, therefore, it is believed that the multiple linear antennas with U-type parallel connection can be successfully applicable to the large area flat panel display processing.

  • PDF

Robust Positive Real Control of Linear Systems with Repeated Scalar Block Parameter Uncertainty (반복된 스칼라 블록 파라미터를 포함한 불확실성을 갖는 선형 시스템의 가인 양실 제어)

  • 이보형;심덕선;이장규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.574-578
    • /
    • 1998
  • This paper considers the robust positive real problem for linear systems with linear fractional-type norm-bounded repeated scalar block parameter uncertainty. It is shown that the robust positive real problem can be converted into the standard positive real problem without uncertainty that can be used for the analysis of the given uncertain linear system and the synthesis of a controller that robustly stabilizes and achieves the extended strict positive realness property of the closed-loop transfer function. These results can be also applied to the linear system with general structured uncertainty containing repeated scalar block parameters and are extensions of the previous works that consider only norm-boundedness of the affine unstructured uncertainty.

  • PDF

Sweeping Linearization of Wavelength Swept Laser using PID Control (PID 제어를 이용한 파장 스위핑 레이저의 스위핑 선형화)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a PID control method for sweeping automatic linearization of a wavelength swept laser is proposed. First, the closedloop transfer function embodying the PID control is derived. Through the simulation of the function, Kp = 0.022, Ki = 0.008, Kd = 0.002 were obtained as the best PID coefficients for fast linear sweeping. The performance test using the PID coefficients showed that linear sweeping was held up well with a 98.7% decrement in nonlinearity after the 10th feedback, and 45 nm sweeping range, 1 kHz sweeping frequency, and 8.8 mW average optical power were obtained. The equipment consists of a fiber Bragg grating array, an optical-electronic conversion circuit, and a LabVIEW FPGA program. Every 5s, automatic feedback and PID control generate a new compensated waveform and produce a better linear sweeping than before. Compared with nonlinear sweeping, linear sweeping can reduce the cumbersome and time-consuming recalibration processes and produce more accurate measurement results.