• 제목/요약/키워드: Linear function

검색결과 4,304건 처리시간 0.028초

MEROMORPHIC FUNCTION PARTIALLY SHARES SMALL FUNCTIONS OR VALUES WITH ITS LINEAR c-SHIFT OPERATOR

  • Banerjee, Abhijit;Maity, Sayantan
    • 대한수학회보
    • /
    • 제58권5호
    • /
    • pp.1175-1192
    • /
    • 2021
  • In this paper, we have studied on the uniqueness problems of meromorphic functions with its linear c-shift operator in the light of partial sharing. Our two results improve and generalize two very recent results of Noulorvang-Pham [Bull. Korean Math. Soc. 57 (2020), no. 5, 1083-1094] in some sense. In addition, our other results have improved and generalized a series of results due to Lü-Lü [Comput. Methods Funct. Theo. 17 (2017), no. 3, 395-403], Zhen [J. Contemp. Math. Anal. 54 (2019), no. 5, 296-301] and Banerjee-Bhattacharyya [Adv. Differ. Equ. 509 (2019), 1-23]. We have exhibited a number of examples to show that some conditions used in our results are essential.

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.

UNIQUENESS OF MEROMORPHIC FUNCTION WITH ITS LINEAR DIFFERENTIAL POLYNOMIAL SHARING TWO VALUES

  • Banerjee, Abhijit;Maity, Sayantan
    • 대한수학회논문집
    • /
    • 제36권3호
    • /
    • pp.515-526
    • /
    • 2021
  • The paper has been devoted to study the uniqueness problem of meromorphic function and its linear differential polynomial sharing two values. We have pointed out gaps in one of the theorem due to [1]. We have further extended the corrected form of Chen-Li-Li's result which in turn extend the an earlier result of [8] in a large extent. In fact, we have subtly use the notion of weighted sharing of values in this particular section of literature which was unexplored till now. A handful number of examples have been provided by us pertinent to different discussions. Specially we have given an example to show that one condition in a theorem can not be dropped.

ASYMPTOTIC PROPERTIES OF THE CONDITIONAL HAZARD FUNCTION ESTIMATE BY THE LOCAL LINEAR METHOD FOR FUNCTIONAL ERGODIC DATA

  • MOHAMMED BASSOUDI;ABDERRAHMANE BELGUERNA;HAMZA DAOUDI;ZEYNEB LAALA
    • Journal of applied mathematics & informatics
    • /
    • 제41권6호
    • /
    • pp.1341-1364
    • /
    • 2023
  • This article introduces a method for estimating the conditional hazard function of a real-valued response variable based on a functional variable. The method uses local linear estimation of the conditional density and cumulative distribution function and is applied to a functional stationary ergodic process where the explanatory variable is in a semi-metric space and the response is a scalar value. We also examine the uniform almost complete convergence of this estimation technique.

Optimization of Model based on Relu Activation Function in MLP Neural Network Model

  • Ye Rim Youn;Jinkeun Hong
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.80-87
    • /
    • 2024
  • This paper focuses on improving accuracy in constrained computing settings by employing the ReLU (Rectified Linear Unit) activation function. The research conducted involves modifying parameters of the ReLU function and comparing performance in terms of accuracy and computational time. This paper specifically focuses on optimizing ReLU in the context of a Multilayer Perceptron (MLP) by determining the ideal values for features such as the dimensions of the linear layers and the learning rate (Ir). In order to optimize performance, the paper experiments with adjusting parameters like the size dimensions of linear layers and Ir values to induce the best performance outcomes. The experimental results show that using ReLU alone yielded the highest accuracy of 96.7% when the dimension sizes were 30 - 10 and the Ir value was 1. When combining ReLU with the Adam optimizer, the optimal model configuration had dimension sizes of 60 - 40 - 10, and an Ir value of 0.001, which resulted in the highest accuracy of 97.07%.

점프크기추정량에 의한 수정된 로그잔차를 이용한 불연속 로그분산함수의 추정 (Discontinuous log-variance function estimation with log-residuals adjusted by an estimator of jump size)

  • 홍혜선;허집
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.259-269
    • /
    • 2017
  • 분산함수가 불연속점을 가지는 경우, 대부분의 비모수적 함수 추정 연구에서 분산함수가 음수 값을 갖지 않기에 잔차제곱을 이용한 Nadaraya-Watson 추정량인 국소상수항추정량을 이용하였다. 한편, Huh (2014, 2016a)는 Chen 등 (2009)과 Yu와 Jones (2004)의 연구를 바탕으로 불연속 분산함수를 로그 변환한 로그분산함수를 추정 대상으로 삼아 잔차제곱이나 로그잔차제곱으로 경계점 문제를 가지지 않는 국소선형추정량을 이용하여 비모수적으로 추정하였다. Huh (2016b)는 불연속점에서 점프크기추정량을 활용하여 잔차제곱을 분산함수가 연속인 회귀모형에서 얻어진 잔차제곱인 것처럼 수정한 후 이들을 이용하여 불연속 분산함수의 추정을 연구하였다. 본 연구에서는 불연속 로그분산함수의 점프크기추정량을 이용하여 로그잔차제곱을 수정하고 불연속 로그분산함수를 국소선형추정량을 이용하여 추정하고자 한다. 제안된 추정량의 우수성을 모의실험을 통하여 Chen 등 (2009)의 로그분산함수 추정량을 이용한 Huh (2014)의 불연속 로그분산함수 추정량과 비교하고 실제자료에 적용하고자 한다.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

주파수 전달함수 합성법에 의한 선형시스템의 간소화 (A Simplification of Linear System via Frequency Transfer Function Synthesis)

  • 김주식;김종근;유정웅
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권1호
    • /
    • pp.16-21
    • /
    • 2004
  • This paper presents an approximation method for simplifying a high-order transfer function to a low-order transfer function. A model reduction is based on minimizing the error function weighted by the numerator polynomial of reduced systems. The proposed methods provide better low frequency fit and a computer aided algorithm that estimates the coefficients vector for the numerator and denominator polynomial on the simplified systems from an overdetermined linear system constructed by frequency responses of the original systems. Two examples are given to illustrate the feasibilities of the suggested schemes.

A Study on a One-step Pairwise GM-estimator in Linear Models

  • Song, Moon-Sup;Kim, Jin-Ho
    • Journal of the Korean Statistical Society
    • /
    • 제26권1호
    • /
    • pp.1-22
    • /
    • 1997
  • In the linear regression model $y_{i}$ = .alpha. $x_{i}$ $^{T}$ .beta. + .epsilon.$_{i}$ , i = 1,2,...,n, the weighted pairwise absolute deviation (WPAD) estimator was defined by minimizing the dispersion function D (.beta.) = .sum..sum.$_{{i $w_{{ij}}$$\mid$ $r_{j}$ (.beta.) $r_{i}$ (.beta.)$\mid$, where $r_{i}$ (.beta.)'s are residuals and $w_{{ij}}$'s are weights. This estimator can achive bounded total influence with positive breakdown by choice of weights $w_{{ij}}$. In this paper, we consider a more general type of dispersion function than that of D(.beta.) and propose a pairwise GM-estimator based on the dispersion function. Under some regularity conditions, the proposed estimator has a bounded influence function, a high breakdown point, and asymptotically a normal distribution. Results of a small-sample Monte Carlo study are also presented. presented.

  • PDF

Sensitivity Analysis of the Galerkin Finite Element Method Neutron Diffusion Solver to the Shape of the Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.29-42
    • /
    • 2017
  • The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.