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Abstract. This article introduces a method for estimating the conditional
hazard function of a real-valued response variable based on a functional

variable. The method uses local linear estimation of the conditional den-

sity and cumulative distribution function and is applied to a functional sta-
tionary ergodic process where the explanatory variable is in a semi-metric

space and the response is a scalar value. We also examine the uniform

almost complete convergence of this estimation technique.
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1. Introduction

The hazard function is an important statistical tool used in risk analysis and
survival analysis. In nonparametric estimation, its accuracy is of great interest,
especially when dealing with high-dimensional data. Functional Data Analysis
(FDA) is a subfield that deals with such complex data, including curves and
surfaces. Pioneering work on in this field has been done by [7], as well as [8].

The conditional hazard rate is a vital component of statistics, with many ap-
plications in various fields. A lot of research has been done on the estimation
of the hazard function for both independent and dependent mixing data, with
studies like [11]-[10]. [6] introduced a kernel estimator for the conditional haz-
ard rate in infinite-dimensional space for functional covariates and established
various asymptotic properties.

The relationship between a variable of interest and a functional covariate is
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critical in nonparametric statistical issues. [15] provided and examined the es-
timator of the conditional density and distribution when data is functional and
studied its almost complete convergence using the local linear method. In recent
years, a lot of research has been done on the local linear method, including the
exploration of the quadratic error of the local linear estimator of the conditional
density in [21] and the local linear modelization of the conditional density and
distribution function for functional ergodic data in [26]-[25].

The functional ergodic processes have the property that one sample of the
process reflects the entire set. [22] researched the rates of high consistencies of
the regression function estimator, while [5] investigated the almost entire rate
convergence of the functional recursive kernel of the conditional quantile. In
this work, we focus on the almost-complete convergence with rates of the local
linear estimator of the conditional hazard function. We assume that the data
are samples from a stable ergodic process, and the covariate takes its values in
an infinite-dimensional space.

We present the estimator of the conditional hazard function and the some
notations used in Section 2, list some assumptions in Section 3, and provide our
asymptotic properties results with proofs in Section 4, In Section 5 and the last
we present a numerical simulation using python.

2. Model Formulation

We consider a sequence (Xi, Yi)i=1,...,n of strictly stationary ergodic processes
defined on a probability space (Ω,A,P), where Xi ∈ F , a semi-metric space with
semi-metric d, and Yi ∈ R. The definition proposed by [22] is used in this context.
Our goal is to establish asymptotic conclusions on the concentration qualities of
the probability measure of the functional variable within small balls, which will
provide good mathematical properties of functional nonparametric approaches.
Let C, C ′, and C1, C2, ... be positive constants, x be a fixed point in F , Nx be
a fixed neighborhood of x, and S be a fixed compact subset of R. We aim to
estimate the conditional hazard function hx, where F x denotes the conditional
distribution function of Y given X = x. We assume that F x has a continuous
density fx with respect to the Lebesgue measure on R. The hazard function hx

for y ∈ R and F x(y) < 1 is defined by:

hx(y) =
fx(y)

1− F x(y)
.

To estimate the conditional distribution function F x, we develop the following
local linear method:

F̂ x(y) =

∑n
i=1 Γi(x)K(h−1

K d(x,Xj))H(h−1
H (y − Yi))∑n

i=1 Γi(x)K(h−1
K d(x,Xj))

=

∑n
i=1 ΓiKiHi∑n
i=1 ΓiKi

, (1)

where K is the kernel, H is a distribution function and hK = hK,n (respectively.
hH = hH,n) are a sequence of positive real numbers.
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whith

Γi(x) =

n∑
j=1

ρ2j (x)Kj(x)− (

n∑
j=1

ρj(x)Kj(x))ρi,

where ρj(x) = ρ(Xj , x) , Kj(x) = K(h−1
K d(x,Xj)), and Hj(y) = H(h−1

H (y−Yi)).

Thus, the conditional density estimator, noted f̂x, using the local linear method
is defined by:

f̂x(y) =
h−1
H

∑n
i,j=1 Wij(x)H(h−1

H (y − Yi))∑n
i,j=1 Wij(x)

=
h−1
H

∑n
i=1 ΓiKiHi∑n
i=1 ΓiKi

. (2)

Where

Wij(x) = ρ(Xi, x)(ρ(Xi, x)− ρ(Xj , x))K(h−1
K d(x,Xi))K(h−1

K d(x,Xj)),

whith

Γi(x) = K−1
i (

n∑
j=1

Wij) = ρ2jKj − (

n∑
j=1

ρjKj)ρi,

where ρi = ρ(Xi, x), Ki = K(h−1
K d(x,Xi)) , and Hi = H(h−1

H (y − Yi)).
Basing on the equation (1) and (2), the natural estimator of the conditional
hazard function, is the random variable defined by:

ĥx(y) =
h−1
H

∑n
i=1 ΓiKiHi∑n

i=1 ΓiKi −
∑n

i=1 ΓiKiHi
. (3)

3. Assumptions and Notations

We introduce some notations to express our outcomes. Suppose that for
i = 1, ..., n, the s-field generated by ((X1, Y1), ..., (Xi, Yi)) is denoted by Fi, and
the s-field generated by ((X1,Y1),..., (Xi,Yi),Xi+1) is denoted by Gi. We also
assume that the strictly stationary ergodic process (Xi, Yi)i∈N satisfies some
conditions. In addition, let ϕx(h1, h2) = P(h2 ≤ δ(X,x) ≤ h1) represent the
probability function of a small ball. Our consistency results are outlined in The-
orem 4.1 and rely on the following five assumptions:

(H1) (i) The function ϕ(x, h) := P(X ∈ B(x, h)) > 0, ∀ h > 0,
where B(x, h) = x′ ∈ F/d(x′, x) < h.
(ii) For all i = 1, ..., n there exist a deterministic function ϕi(x, .)
such that almost surely:
0 < P(Xi ∈ B(x, h)|Fi−1) ≤ ϕi(x, h), ∀ h > 0; and ϕi(x, h) → 0 as
h → 0.

(iii) For any r > 0,
1

nϕx(h)

n∑
i=1

ϕi,x(r) → 1; and nϕx(h) → ∞ as

r → 0.
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(H2) (i) The conditional distribution function F x is such that, ∀y ∈ S, ∃β >
0, inf

y∈S
(1− F x(y)) > β, ∀ (y1,y2)∈ S × S, ∀ (x1,x2)∈ Nx ×Nx:

|F x1(y1)− F x2(y2)| ≤ C1(d(x1, x2)
β1 + |y1 − y2|β2); β1 > 0, β2 > 0.

(ii) The density fx is such that,∀y ∈ S, ∃β > 0 , fx(y) < β, ∀ (y1,y2)∈
S × S, ∀ (x1,x2)∈ Nx ×Nx,

|fx1(y1)− fx2(y2)| ≤ C2(d(x1, x2)
β1 + |y1 − y2|β2); β1 > 0, β2 > 0.

(H3) The function ρ satisfies the following condition:

∀ z ∈ F , C1|d(x, z)| ≤ |ρ(x, z)| ≤ C2|d(x, z)|.
(H4) (i)The kernel K is a a nonnegative function on its support [−1, 1] such

that:

0 < C1I[−1,1] < K(t) < C2I[−1,1] < ∞,

where IA is the indicator function.
(ii)The kernel function H is a positive, bounded, Lipschitzian continuous
function such that:∫

|t|β2H(1)(t)dt < ∞ and
∫
H(1)2(t)dt < ∞ .

(iii) On the distribution function H:

E(Hi(y)|Gi−1) = E(Hi(y)|Xi).

(H5) (i)The bandwidths hK are such that: ∃n0 > 0 for which:

− 1
ϕ(hK)

∫ 1

−1
ϕ(zhK , hK) d

dz (z
2K(z))dz > C , ∀n > n0.

(ii)

hK

∫
B(x,hK)

ρ(µ, x)dP(µ) = 0(
∫
B(x,hK)

ρ2(µ, x)dP(µ)),
where dP(x) is the cumulative distribution of X.
(iii)

limn→∞ hK = 0, limn→∞ hH = 0, and limn→∞
logn

nϕ(hK) = 0,

and

limn→∞ nλhH = ∞,and limn→+∞
log(n)

nhHϕx(hK=)
= 0, ∀ λ > 0.

The hypotheses for this paper are as follows: The first assumption (H1) in-
volves the use of small ball techniques, which are discussed in detail. The second
assumption (H2) relates to the Lipschitz’s condition for the conditional distri-
bution and density functions, which are assumed to be continuous with respect
to each variable. This enables us to evaluate the bias concept without relying
on differentiability. The third assumption (H3) is considered to be unrestrictive.
The fourth assumption (H4)(i) places regularity conditions on the kernel K used
for the estimates. Finally, assumptions (H5)(i) through (ii) are concerned with
the specific behavior of the smoothing parameter hk and its relationship with
the small ball probabilities and the kernel K, as well as controlling the local
behavior of ρ to simulate the local shape of the model. (H5)(iii) are technical
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conditions. The remaining assumptions (H4)(ii) and (iii) are also a technical
conditions imposed for the sake of brevity in the proofs.

4. Main results

In this section, we aim to introduce our principal result which is the asymp-

totics properties of the estimator ĥx(y).

Theorem 4.1. Once the hypothesis (H1)-(H5) are met, we have

sup
y∈S

|ĥx(y)− hx(y)| = O
(
hb1
K + hb2

H

)
+O

(√
log n

nhHϕx
(hK)

)
a.co. (4)

Proof. Before starting the proof of our main result, it is useful to note the follow-
ing decomposition and subadditivity results on which the theorem 4.1 is based:

ĥx(y)− hx(y) =
f̂x(y)

1− F̂ x(y)
− fx(y)

1− F x(y)

=
f̂x(y)− f̂x(y)F x(y)− fx(y) + fx(y)F̂ x(y)(

1− F̂ x(y)
)
(1− F x(y))

=
1

1− F̂ x(y)

[(
f̂x(y)− fx(y)

)
+

fx(y)

1− F x(y)

(
F̂ x(y)− F x(y)

)]
.

□

Theorem 4.2. Under assumptions (H1),(H2)(i) and (H3)-(H5), we have

sup
y∈S

|F̂ x(y)− F x(y)| = O(hb1
K ) +O(hb2

H ) +O

(√
log n

nϕx(hK)

)
, a.co. (5)

Theorem 4.3. Under assumptions (H1),(H2)(ii) and (H3)-(H7), we have

sup
y∈S

|f̂x(y)− fx(y)| = O(hb1
K ) +O(hb2

H ) +O

(√
φ(hK) log n

n2hHϕ2
x(hK)

)
, a.co. (6)

Theorem 4.4. Under assumptions of theorem 4.2, we have

∃ δ > 0 such that

∞∑
n=1

P
{
inf
y∈S

|1− F̂ x(y)| ≤ δ

}
< ∞. (7)

We introduce some additional notation:

F̂ x
N (y) =

1

nE(Γ1K1)

n∑
i=1

ΓiKiHi, F
x

N (y) =
1

nE(Γ1K1)

n∑
i=1

E(ΓiKiHi|Fi−1),

F̂D(x) =
1

nE(Γ1K1)

n∑
i=1

ΓiKi, FD(x) =
1

nE(Γ1K1)

n∑
i=1

E(ΓiKi|Fi−1),
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f̂x
k (y) =

1

nhk
HE(Γ1K1)

n∑
i=1

ΓiKiH
k
i , f

x

k(y) =
1

nhk
HE(Γ1K1)

n∑
i=1

E(ΓiKiH
k
i |Fi−1).

We can write the following decomposition:

F̂ x(y)− F x(y) = B̂n(x, y) +
1

F̂D(x)

[
(B̂n(x, y) + F x(y))Q̂n(x, y) + R̂n(x, y)

]
, (8)

where

B̂n(x, y) =
F

x

N (y)

FD(x)
− F x(y), Q̂n(x, y) = FD(x)− F̂

(
Dx),

R̂n(x, y) = F̂ x
N (y)− F

x

N (y), and:

f̂x(y)− fx(y) =

(
f
x

1(y)

f
x

0(y)
− fx(y)

)
+

1

f̂x
0

[

(
f
x

1(y)

f
x

0(y)
− fx(y)

)(
f
x

0(y)− f̂x
0 (y)

)
(9)

+
(
(f̂x

1 (y)− f
x

1(y))− fx(y)(f̂x
0 (y)− f

x

0(y))
)
]

Thus, we show the previous theorems 4.2 and 4.3 by using the following inter-
mediate lemmas:

Lemma 4.5. Under assumptions (H1),(H2)(i),and (H3)-(H5), we have that

sup
y∈S

∣∣∣B̂n(x, y)
∣∣∣ = O

(
hb1
K + hb2

H

)
a.co.

Lemma 4.6. Under assumptions (H1),(H2)(i) and (H3)-(H5), we obtain

sup
y∈S

∣∣∣R̂n(x, y)
∣∣∣ = O

(√
log(n)

nϕ(hK)

)
a.co.

Lemma 4.7. Under assumptions (H1)-(H4)(i),and (H5), we get

sup
y∈S

∣∣∣Q̂n(x, y)
∣∣∣ = O

(√
log(n)

nϕ(hK)

)
a.co,

Corollary 4.8. Under the assumptions of Lemma 4.7, we have
∞∑

n=1

P( inf
x∈CF

F̂D(x) <
1

2
) < ∞.

Lemma 4.9. Under the assumptions (H1),(H2)(ii),(H3), and (H4), we have

(i) sup
y∈S

∣∣∣∣∣(f
x

1(y)

f
x

0(y)
− fx(y))

∣∣∣∣∣ = O(1).

(ii) sup
y∈S

∣∣∣∣∣(f
x

1(y)

f
x

0(y)
− fx(y))

∣∣∣∣∣ = O
(
hb1
K

)
+O

(
hb2
H

)
.
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Lemma 4.10. Under the assumptions (H1),(H3)-(H5), we have

f̂x
0 (y)− f

x

0(y) = O

(√
φx(hK) log(n)

n2ϕ2
x(hK)

)
, a.co.

Lemma 4.11. Under the assumptions of lemma 4.10, we have

∃C > 0 such that

∞∑
n=1

P
(
f̂x
0 (y) < C

)
< ∞.

Lemma 4.12. Under the assumptions (H1),(H2)(i),(H3)-(H5), we have

sup
y∈℘

∣∣∣f̂x
1 (y)− f

x

1(y)
∣∣∣ = O

(√
φx(hK) log(n)

n2hHϕ2
x(hK)

)
, a.co.

First, we provide the following initial technical lemmas that are necessary to
support our asymptotic properties results.

Lemma 4.13. Under the assumptions (H1),(H3) and (H4)(i), we have: ∀(k, l) ∈
N∗ × N

(i) E(Kk
i |ρi|l|Fi−1) ≤ Chl

Kϕi,x(hK),

(ii) E(ΓiKi|Fi−1) = O
(
nh2

Kϕi,x(hK)
)
,

(iii) E(ΓlKl) = O
(
nh2

Kϕx(hK)
)
.

Proof. For this last lemma 4.13: Part(i); On starts by using (H3) followed by
using (H4), we get

Kk
i |ϕi|lh−1

K ≤ CKk
i |d(Xi, x)|lh−1

K ≤ C|d(Xi, x)|lh−1
K I[−1,1] (d(Xi, x)) ,

and thereby, E
(
Kk

i |ϕi|lh−1
K |Fi−1

)
≤ CP (Xi ∈ B(x, hk)|Fi−1) ≤ Cϕi,x(hK),

which is the alleged result.
Part(ii); Recalling that because the Kernel K is bounded on [−1, 1] and under
(H3), we get

|Γi| ≤ nCh2
K + nChK |ρi|.

by using (i), we find

E(ΓiKi|Fi−1) ≤ nC1h
2
Kϕi,x(hK) + nC2h

2
Kϕi,x(hK) ≤ nCh2

Kϕi,x(hK).

Part(iii) of this lemma is directly verified by combining it with (H)(iii) and by
treating Fi as the trivial σ− filed. □

Lemma 4.14. Under the assumptions (H1),(H3),and (H4)(i), we have: ∀(k, l) ∈
N∗ × N

lim
n→∞

f
x

0(y) = O(1).
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Proof. We begin by using parts (ii) and (iii) of Lemma 4.13 to obtain

lim
n→∞

f
x

0(y) = O(1) lim
n→∞

1

nϕx(hK)

n∑
i=1

ϕi,x(hK).

Finally, the applied part(iii)of (H1) to get the desirable results. □

Lemma 4.15. Under the assumptions (H1),(H2)(i), (H3), and (H4), we have

(i) sup
x∈S

FD(x) = O(1), (ii) inf
x∈S

FD(x) = O(1).

Proof. Before beginning the proof of (i), it is evident that using Lemma A from
[14], we obtain the following:

nC1h
2
Kϕ(hK) ≤ E(Γ1(x)K1(x)) ≤ nC2h

2
Kϕ(hK). (10)

Then, by considering Lemma 4.13 , we get

sup
x∈S

FD(x) = O(1) sup
x∈S

1

nϕ(hK)

n∑
i=1

ϕi(hK).

Therefore, the (H1)(iii) is a consequence of the asserted result (i) of this lemma.
The proof of (ii) resembles that of (i). □

Lemma 4.16. Under the assumptions (H1),(H2)(i),and (H3)-(H5), we have

(i) hKE(ρiKa
i |Fi−1) = O(h2

Kϕi(hK)), ∀a > 0.

(ii)
1

nϕ(hK)

n∑
i=1

E(Kc
i |Fi−1) = Mc +O(1), for c = 1, 2.

(iii)
1

nϕ(hK)

n∑
i=1

E(Γ2
iK

2
i |Fi−1)

= (n− 1)2(N(1, 2))2h4
Kϕ2(hK)M2 +O

(
h4
Kϕ2(hK)

)
.

Proof. The proof of (i) and (ii) are analogous to the proof of (a) and (b) of
lemma A.1 in [30].To prove (iii), We make advantage of the conditional vari-
ance’s definition, to prove (iii) Consequently,

1

nϕ(hK)

n∑
i=1

E(Γ2
iK

2
i |Fi−1) =

1

nϕ(hK)

n∑
i=1

(
V ar(ΓiKi|Fi−1) + (E(ΓiKi|Fi−1))

2
)
.

(11)
It is still necessary to study each concept of 11. For the first concept in this
equation’s right-hand side, we find

V ar(ΓiKi|Fi−1)

= (n− 1)
(
V ar(ρ21(x)K1(x)Ki|Fi−1) + V ar(ρ1(x)K1(x)ρiKi|Fi−1)

)
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= (n− 1)(E(ρ41(x)K2
1 (x))E(K2

i |Fi−1)︸ ︷︷ ︸
T1

−
(
E(ρ21(x)K1(x))E(Ki|Fi−1)

)2︸ ︷︷ ︸
T2

+ E(ρ21(x)K2
1 (x))E(ρ2iK2

i |Fi−1)︸ ︷︷ ︸
T3

− (E(ρ1(x)K1(x))E(ρiKi|Fi−1))
2︸ ︷︷ ︸

T4

).

Then, by using (i) of lemma 4.13, we get :
n− 1

nϕ(hK)

n∑
i=1

Ti = O((n−1)h4
Kϕ(hK))

for i = 1, 2, 3, 4.

It follows that
1

nϕ(hK)

n∑
i=1

V ar(ΓiKi|Fi−1) → 0, as n → ∞.

On the other hand, we must investigate the first concept on the right hand side
of Equality 11 to finish the proof of (iii) in this lemma. We write

1

nϕ(hK)

n∑
i=1

(E(ΓiKi|Fi−1))
2

=
1

nϕ(hK)

n∑
i=1

(E(
n∑

j=1

ρ2j (x)Kj(x)Ki −
n∑

j=1

ρj(x)Kj(x)ρiKi|Fi−1))
2

= γn1 + γn2 + γn3,

where

γn1 =
(n− 1)2

nϕ(hK)
(E(ρ21(x)K1(x)))

2
n∑

i=1

(E(Ki|Fi−1))
2
,

γn2 =
(n− 1)2

nϕ(hK)
(E(ρ1(x)K1(x)))

2
n∑

i=1

(E(ρiKi|Fi−1))
2
,

γn3 = −2(n− 1)2

nϕ(hK)
E(ρ21(x)K1(x))E(ρ1(x)K1(x))

n∑
i=1

E (Ki|Fi−1)E (ρiKi|Fi−1) .

By using Jensen’s inequality in relation to the concept γn1, we obtain

γn1 ≤ (n− 1)2

nϕ(hK)

(
E(ρ21(x)K1(x))

)2 n∑
i=1

E(K2
i |Fi−1),

We use (c) of lemma A.2 in [30] and (ii) of lemma 4.16 to get

γn1 = (n− 1)2
(
(N(1, 2))2h4

Kϕ2(hK)M2 +O(h4
Kϕ2(hK))

)
. (12)

Concerning the concept γn2, we use (b) of lemma A.1 in [30] and (i) of lemma
4.16 to produce

γn2 = O
(
(n− 1)2h4

Kϕ(hK)
)
. (13)
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For the concept γn3, we use (i) of lemma A in [14], (i) of lemma 4.13, and (i) of
lemma 4.16 to obtain

γn3 = O
(
(n− 1)2h5

Kϕ(hK)
)
. (14)

Combining 12, 13, and 14 enables one to reach the desired result. □

The next, by Following the above technical lemmas and Asymptotic proper-
ties, we aim to proof our main results:
We prove the first lemma 4.5;

Proof. We begin by composing

sup
y∈S

∣∣∣B̂n(x, y)
∣∣∣ = sup

y∈S

∣∣∣B̂n(x, y)
∣∣∣ / inf

y∈S

∣∣FD(x)
∣∣ ,

where B̃n(x, y) = F
x

N (y) − F x(y)FD(x). First, observe that B̃n(x, y) can be
written as

B̃n(x, y) =
1

nE (Γ1K1)

n∑
i=1

E (ΓiKiHi|Fi−1)− F x(y)E (ΓiKi|Fi−1)

=
1

nE (Γ1K1)

n∑
i=1

E (ΓiKi|Gi−1|Fi−1)− F x(y)E (ΓiKi|Fi−1)

≤ 1

nE(Γ1K1)

n∑
i=1

{E (ΓiKi|E[Hi|Xi]− F x(y)|Fi−1)}. (15)

The assumption (H4)(iii) is used to obtain the last inequality.
The next step is the integration by parts and changing of variables

E(Hi|Xi) =

∫
R
H(1)(t)F x(y − hHt)dt.

Remark 4.1. H(1) is probability density function.

Hence, |E(Hi|Xi)− F x(y)| ≤
∫
R H(1)(t)|F x(y − hHt)− F x(y)|dt.

Moreover, it follows by assumptions (H2)(i) and (H4)(i) that

IB(x,hK)(Xi)|E(Hi|Xi)− F x(y)| ≤
∫
R
H(1)(t)(hb1

K + |t|b2hb2
H )dt.

Under the assumption (H4)(ii), we discover that:

IB(x,hK)(Xi)|E(Hi|Xi)− F x(y)| ≤ C(hb1
K + hb2

H ). (16)

By Combining the inequality 15 with (i) of Lemma 4.15, we obtain

sup
y∈S

∣∣∣B̂n(x, y)
∣∣∣ = O

(
hb1
K + hb2

H

)
sup
y∈S

FD(x),

Which gives the result. □
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The Proof of lemma 4.6;

Proof. Firstly, since the Kernel k is constrained to [−1, 1] by using (H3), it is
clear that:

|Γi(x)| ≤ nCh2
K + nChK |ρi(x)|. (17)

Second, for all y ∈ S, we have

sup
y∈S

∣∣∣R̂n(x, y)
∣∣∣

≤ sup
y∈S

∣∣∣F̂ x
N (y)− F̂

xk(x)

N (y)
∣∣∣︸ ︷︷ ︸

R1

+sup
y∈S

∣∣∣F̂ xk(x)

N (y)− F
xk(x)

N (y)
∣∣∣︸ ︷︷ ︸

R2

+sup
y∈S

∣∣∣F xk(x)

N (y)− F
x

N (y)
∣∣∣︸ ︷︷ ︸

R3

.

with k(x) = argmink∈1,2,...,dn
|d(x, xk)|

The three concepts that make up this decomposition will now each be discussed
separately. We define by the consistency of the concept R1.
The boundeness on K and H, and By using the inequality 10,we have

R1 ≤ sup
y∈S

1

n

n∑
i=1

|Hi(y)||
1

E(Γ1(x)K1(x))
Γi(x)Ki(x)IB(x,hK)(Xi)

− 1

E
(
Γ1(xk(x))K1(xk(x))

)Γi(xk(x))Ki(xk(x))IB(xk(x),hK)(Xi)|

≤

(
C

n2h2
Kϕ(hK)

sup
y∈S

n∑
i=1

|Γi(x)IB(x,hK)(Xi)| × |Ki(x)−Ki(xk(x))IB(xk(x),hK)(Xi)|

)

+

(
C

n2h2
Kϕ(hK)

sup
y∈S

n∑
i=1

|Ki(xk(x))IB(xk(x),hK)(Xi)| × |Γi(x)IB(x,hK)(Xi)− Γi(xk(x))|

)
: F1 + F2.

Let’s start by discussing the concept F1.By using inequality 17 and the fact
that Kernel k satisfies the Lipschitz condition, we can write

|Γi(x)IB(x,hK)(Xi)||Ki(x)−Ki(xk(x))IB(xk(x),hK)(Xi)|

≤ nCh2
K(

rn
hK

IB(x,hK)∩(xk(x),hK)(Xi) + I
B(x,hK)∩(xk(x),hK)

(Xi)),

which implies that:

F1 ≤ Crn
nhKϕ(hK)

sup
y∈S

1

n

n∑
i=1

IB(x,hK)∩(xk(x),hK)(Xi)

+
C

nϕ(hK)
sup
y∈S

1

n

n∑
i=1

I
B(x,hK)∩(xk(x),hK)

(Xi).

With regards to the concept F2, we get that

IB(xk(x),hK)(Xi)|Γi(x)IB(x,hK) − Γi(xk(x))|
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≤ IB(x,hK)∩(xk(x),hK)(Xi)|Γi(x)− Γi(xk(x))|︸ ︷︷ ︸
A

+nCh2
KI

B(xk(x),hK)∩(x,hK)
(Xi)︸ ︷︷ ︸

B

.

Next, we determine the first element of this inequality’s right side

A = IB(x,hK)∩(xk(x),hK)(Xi)|
n∑

i=1

ρ2i (x)Ki(x)− ρ2i (xk(x))Ki(xk(x))

−

((
n∑

i=1

ρi(x)Ki(x)

)
ρj(x)

)
−

((
n∑

i=1

ρi(xk(x))Ki(xk(x))

)
ρj(xk(x))

)
|

≤ A1 +A2

where

A1 = IB(x,hK)∩(xk(x),hK)(Xi)|
n∑

i=1

ρ2i (x)Ki(x)− ρ2i (xk(x))Ki(xk(x))|

A2 = IB(x,hK)∩(xk(x),hK)(Xi)|

(
n∑

i=1

ρi(x)Ki(x)

)
ρj(x)

−

(
n∑

i=1

ρi(xk(x))Ki(xk(x))

)
ρj(xk(x))|

For examine the concepts A1 and A2, we put

T k,l = IB(x,hK)∩(xk(x),hK)(Xi)|

(
n∑

i=1

ρki (x)Ki(x)

)
ρlj(x)

−

(
n∑

i=1

ρki (xk(x))Ki(xk(x))

)
ρlj(xk(x))| with k = 1, 2 and l = 0, 1.

Therefore, T k,l ≤ T k,l
1 + T k,l

2 ; with

T k,l
1 = IB(x,hK)∩(xk(x),hK)(Xi)

(
n∑

i=1

|ρki (x)|Ki(x)× |ρlj(x)− ρlj(xk(x))|

)
,

T k,l
2 = IB(x,hK)∩(xk(x),hK)(Xi)

×

(
|ρlj(xk(x))| × |

n∑
i=1

ρki (x)Ki(x)− ρki (xk(x))Ki(xk(x))|

)
.

Assuming l = 1 and by the hypothesis (H3)(ii), we have

IB(x,hK)∩(xk(x),hK)(Xi)|ρj(x)− ρj(xk(x))| ≤ CrnIB(x,hK)∩(xk(x),hK)(Xi).

So, for l = 0, k = 2

T k,l
1 = 0 (18)
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and for l = 1, k = 1

T k,l
1 =≤ nCrnhKIB(x,hK)∩(xk(x),hK)(Xi). (19)

For the concept T k,l
2

T k,l
2 = IB(x,hK)∩(xk(x),hK)(Xi)

(
n∑

i=1

|ρlj(xk(x))|Ki(x)× |ρki (x)− ρki (xk(x))|

)

+IB(x,hK)∩(xk(x),hK)(Xi)

(
n∑

i=1

|ρlj(xk(x))||ρki (xk(x))||Ki(x)−Ki(xk(x))|

)
Observe that

IB(x,hK)∩(xk(x),hK)(Xi)|ρ2j (x)− ρ2j (xk(x))| ≤ CrnhKIB(x,hK)∩(xk(x),hK)(Xi),

which implies that for k = 1, 2

IB(x,hK)∩(xk(x),hK)(Xi)|ρkj (x)− ρkj (xk(x))| ≤ Crnh
k−1
K IB(x,hK)∩(xk(x),hK)(Xi).

Therefore, for l = 0, and k = 2

T k,l
2 ≤ nCrnhKIB(x,hK)∩(xk(x),hK)(Xi). (20)

and for l = 1, and k = 1

T k,l
2 ≤ nCrnhKIB(x,hK)∩(xk(x),hK)(Xi). (21)

Then, by combining 18 with 20, we find that:
A1 ≤ nCrnhKIB(x,hK)∩(xk(x),hK)(Xi), by combining inequalities 19 and 21, we

have: A2 ≤ nCrnhKIB(x,hK)∩(xk(x),hK)(Xi). which implies that:

A ≤ nCrnhKIB(x,hK)∩(xk(x),hK)(Xi). Thus,

F2 ≤ Crn
nhKϕ(hK)

sup
y∈S

n∑
i=1

IB(x,hK)∩(xk(x),hK)(Xi)

+
C

nϕ(hK)
sup
y∈S

n∑
i=1

I
B(xk(x),hK)∩(x,hK)

(Xi).

Consequently, we obtain: R1 ≤ C sup
y∈S

(R1.1 +R1.2 +R1.3), where

R1.1 =
C

nϕ(hK)

n∑
i=1

I
B(xk(x),hK)∩(x,hK)

(Xi),

R1.2 =
Crn

nϕ(hK)

n∑
i=1

IB(x,hK)∩(xk(x),hK)(Xi),

R1.3 =
C

nϕ(hK)

n∑
i=1

I
B(x,hK)∩(xk(x),hK)

(Xi).
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Then, using the standard inequality for sums of bounded random variables with
Zi identified, we evaluate those final concepts so that

Zi =


1

ϕ(hK) [IB(xk(x),hK)∩(x,hK)
(Xi)], for R1.1;

rn
hKϕ(hK) [IB(x,hK)∩(xk(x),hK)(Xi)], for R1.2;

1
ϕ(hK) [IB(x,hK)∩(xk(x),hK)

(Xi)], for R1.3;.

It is clear that for R1.1 and R1.3, we have

Zi = O

(
1

ϕ(hK)

)
, E[Zi] = O

(
rn

ϕ(hK)

)
, E[Z2

i ] = O

(
rn

ϕ(hK)2

)
.

Therefore, R1.1 = O
(

rn
ϕ(hK)

)
+O

(√
rn log(n)/nϕ(hK)2

)
a.co.

In a similar manner, the assumption (H5) permits getting, for R1.2:

Zi = O

(
rn

hKϕ(hK)

)
, E[Zi] = O

(
rn
hK

)
, E[Z2

i ] = O

(
r2n

h2
Kϕ(hK)

)
,

which implies that R1.2 = O
(√

log(dn)/nϕ(hK)
)

a.co.

We must combine all of the intermediate results to get:

R1 = O
(√

log(dn)/nϕ(hK)
)

a.co.

Conversely, the concept R2, we have ∀ϵ > 0,

P
(
R2 > ϵ

√
log(dn)/nϕ(hK)

)
= P

(
max

k∈1,...n
|F̂ xk(x)

N (y)− F
xk(x)

N (y)| > ϵ

)
≤ dn max

k∈1,...dn

P
(
|F̂ xk(x)

N (y)− F
xk(x)

N (y)| > ϵ
√

log(dn)/nϕ(hK)
)
.

Let |F̂ xk(x)

N (y)− F
xk(x)

N (y)| = 1

E(Γ1K1)

n∑
i=1

Si

,

with Si = Γi(xk(x))Ki(xk(x))Hi(y) − E
(
Γi(xk(x))Ki(xk(x))Hi(y)|Fi−1

)
. We

obtain

E(S2
i |Fi−1) = E

(
(ΓiKi)

2H2
i |Fi−1

)
−E ((ΓiKi)Hi|Fi−1)

2 ≤ E
(
(ΓiKi)

2H2
i |Fi−1

)
.

As Hi ≤ 1, we deduce that E(S2
i |Fi−1) ≤ E(Γ2

iK
2
i |Fi−1). By using the equa-

tion 17, we get E(S2
i |Fi−1) ≤ 2Cn2h4

K(hK).

Remark 4.2. Si is an array of triangles representing the bounded martingale
difference relative to the sequence of σ-fields (Fi−1)i≥1.

Next we get for every ϵ > 0, using the exponential inequality of lemma 1 of
[17] (with d2i = Cn2h4

K(hK)),

P
(
|F̂ xk(x)

N (y)− F
xk(x)

N | > ϵ
√

log(dn)/nϕ(hK)
)
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= P

(
| 1

nE(Γ1Ki)

n∑
i=1

Si| > ϵ
√

log(dn)/nϕ(hK)

)
≤ exp−Cϵ2 log(dn).

Thus, by choosing ϵ such that Cϵ2 = ζ, we obtain

dn max
k∈1,...dn

P
(
|F̂ xk(x)

N (y)− F
xk(x)

N (y)| > ϵ
√
log(dn)/nϕ(hK)

)
≤ Cd1−ζ

n .

Since

∞∑
n=1

d1−ζ
n < ∞, we get that R2 = O

(√
log(dn)/nϕ(hK)

)
a.co.

For the concept R3, we have R3 ≤ E
(
sup
y∈S

|F̂ xk(x)

N (y)− F
xk(x)

N (y)||Fi−1

)
.

We follow the same procedures as when studying the concept R1 to determine

R3 = O
(√

log(dn)/nϕ(hK)
)

a.co.

This is sufficient to finish the proof of Lemma 4.6. □

We Proof of lemma 4.7;

Proof. Lemma 4.6 can be used to determine this result by taking Hi = 1.
(H4)(ii) and (H4) (iii) are not needed in this situation.

For corollary 4.8 it is clear that inf
x∈CF

|F̂D(x)| ≤ 1

2
, ∃x ∈ CF so that:

1− F̂D(x) ≥ 1

2
⇒ sup

x∈CF

|1− F̂D(x)| ≥ 1

2
.

In accordance with this Lemma 4.7, we obtain

P
(

inf
x∈CF

|F̂D(x)| ≤ 1

2

)
≤ P

(
sup
x∈CF

|1− F̂D(x)| ≥ 1

2

)
.

Consequently, P
(

inf
x∈CF

|F̂D(x)| ≤ 1

2

)
< ∞. which end the proof. □

The Proof of lemma 4.9;

Proof. Note that

f
x

1(y)

f
x

0(y)
− fx(y)

=
1

nhHE(Γ1K1)f
x

0(y)

n∑
i=1

E(ΓiKiHi|Fi−1)− hHfx(y)E(ΓiKi|Fi−1)

=
1

nhHE(Γ1K1)f
x

0(y)

n∑
i=1

E (ΓiKiE(Hi|Gi−1)|Fi−1)− hHfx(y)E(ΓiKi|Fi−1)
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≤ 1

nhHE(Γ1K1)f
x

0(y)

n∑
i=1

E (ΓiKi|E[Hi|Xi]− hHfx(y)|Fi−1).

Following, a integration by parts and a change of variable allows for

E(Hi|Xi) =

∫
R
H(t)fx(y − hHt)dt, (22)

Thus, we have |E[Hi|Xi]− hHfx(y)| ≤ hH

∫
R H(t)|fx(y − hHt)− fx(y)|dt.

On one hand, we get the part (i) of Lemma 4.9, if we adopt the hypothesis
(H2)(i), followed by (H4)(ii), and Lemma 4.14.
On the other hand, if we use the hypothesis (H2)(i), we obtain

IB(x,hK)(Xi)|E[Hi|Xi]− hHfx(y)| ≤ hH

∫
R
H(t)(hb1

K + |t|b2hb2
H )dt.

f
x

1(y)− fx(y)f
x

0(y) = (O(hb1
K ) +O(hb2

H ))× 1

nE(Γ1K1)

n∑
i=1

E(ΓiKi|Fi−1)

=
(
O(hb1

K ) +O(hb2
H )
)
× f

x

0(y).

The part(ii) of Lemma 4.9 can be obtained by using Lemma 4.14. □

Now we Proof of lemma 4.10;

Proof. Let us first write

f̂x
k (y)− f

x

k(y) =
1

nhk
HE(Γ1K1)

n∑
i=1

(ΓiKiH
k
i − E(ΓiKiH

k
i |Fi−1))

=
1

nhk
HE(Γ1K1)

n∑
i=1

Ti, with k = 0, 1,

Given that E(ΓiKiH
k
i |Fi−1) is Fi−1 measurable, it follows that

E(T 2
i |Fi−1) = E

(
(ΓiKi)

2H2k
i |Fi−1

)
− E

(
(ΓiKiH

k
i |Fi−1)

2
)

≤ E
(
(ΓiKi)

2E(H2k
i |Gi−1)|Fi−1

)
≤ E

(
(ΓiKi)

2E(H2k
i |Xi)|Fi−1

)
.

Next, utilizing 22 and the hypotheses (H2)(i), we obtain E(H2k
i |Xi) = O(Hk

i ).
So, E(T 2

i |Fi−1) ≤ Chk
HE(Γ2

iK
2
i |Fi−1);

E(T 2
i |Fi−1) ≤ 2Chk

H

E((
n∑

j=1

ρ2jKj)
2K2

i |Fi−1) + E((
n∑

j=1

|ρj |Kj)
2ρ2iK

2
i |Fi−1)

 .

≤ 2Chk
H

(
Cn2h4

KE(K2
i |Fi−1) + Cn2h2

KE(ρ2iK2
i |Fi−1)

)
.

This end inequality results from (H3) and (H4)(i).
Then, by using Lemma 4.16 (i) we can obtain E(T 2

i |Fi−1) ≤ 2C ′n2hk
Hh4

Kϕi,x(hK).
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We now use the exponentially inequality of Lemma 1 in [22] (with
d2i = C ′n2hk

Hh4
Kϕi,x(hK)) to obtain for all ϵ > 0:

P
(
|f̂x

k (y)− f
x

k(y)| > ϵ
)

= P

(
| 1

nhk
HE(Γ1K1)

n∑
i=1

Ti| > ϵ

)
≤ 2 exp

[
− ϵ2n2h2k

H (E(Γ1K1))
2

2
(
Dn + Cϵnhk

HE(Γ1K1)
)] .

Taking ϵ = ϵ0
√

φx(hk) log(n)

n2hk
Hϕ2

x(hK)
, then

P

(
|f̂x

k (y)− f
x

k(y)| > ϵ0

√
φx(hk) log(n)

n2hk
Hϕ2

x(hK)

)

≤ 2 exp

− n2h2k
H (E(Γ1K1))

2ϵ20
φx(hk) log(n)

n2hk
Hϕ2

x(hK)

2
(
Dn + Cnhk

HE(Γ1K1)ϵ0
√

φx(hk) log(n)

n2hk
Hϕ2

x(hK)

)
 .

By using Lemma 4.13(iii), enables us to compose

P

(
f̂x
k (y)− f

x

k(y) > ϵ0

√
φx(hk) log(n)

n2hk
Hϕ2

x(hK)

)

≤ 2 exp

− n2h2k
H (O(nh2

Kϕx(hK)))2ϵ20
φx(hk) log(n)

n2hk
Hϕ2

x(hK)

2nhk
Hh2

Kφx(hK)
(
C ′nh2

K +O(nϕx(hK))ϵ0
√

log(n)

n2hk
Hϕ2

x(hK)φx(hK)

)
)


≤ 2 exp

− n2h2k
H (O(nh2

Kϕx(hK)))2ϵ20
φx(hk) log(n)

n2hk
Hϕ2

x(hK)

2nhk
Hh2

Kφx(hK)
(
C ′nh2

K +O(1)ϵ0
√

log(n)

hk
Hφx(hK)

)
)

 .

Then let’s use the fact that for any n, under (H1)(ii) and (iii), we have φx(hK) ≥
Cnϕx(hK), which suggests that

log(n)

hk
Hφx(hK)

≤ C ′φx(hK) log(n)

n2hk
Hϕ2

x(hK)
.

Therefore, under (H5), we have limn→∞
log(n)

hk
Hφx(hK)

= 0.

From the above, we obtain P

(
f̂x
k (y)− f

x

k(y) > ϵ0

√
φx(hk) log(n)

n2hk
Hϕ2

x(hK)

)
≤ 2n−C0ϵ

2
0 ;

As a result, by applying Borel-Lemma Cantelli’s and making ϵ0 sufficiently large,
we can conclude that

f̂x
k (y)− f

x

k(y) =

(√
φx(hk) log(n)

n2hk
Hϕ2

x(hK)

)
a.co. (23)

This last result completes the proof of Lemma 4.10 by setting k = 0. □
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The Proof of lemma 4.11;

Proof. In accordance with the hypotheses (H1)(iii) and (H4), we get

0 <
C

nϕx(hK)

n∑
i=1

P (Xi ∈ B(x, hk)|Fi−1) ≤ f
x

0(y) ≤ |f̂x
0 (y)− f

x

0(y)|+ f̂x
0 (y).

Therefore,

P
(
f̂x
0 (y) ≤

C

2

)
≤ P

(
C

nϕx(hK)

n∑
i=1

P(Xi ∈ B(x, hk)|Fi−1) <
C

2
+ |f̂x

0 (y)− f
x

0(y)|

)

≤ P

(
| C

nϕx(hK)

n∑
i=1

P(Xi ∈ B(x, hk)|Fi−1)− |f̂x
0 (y)− f

x

0(y)| − C| > C

2

)
.

Under the Lemma 4.10 and (H1)(iii) we receipt that∑
n

P

(
| C

nϕx(hK)

n∑
i=1

P(Xi ∈ B(x, hk)|Fi−1)− |f̂x
0 (y)− f

x

0(y)| − C| > C

2

)
< ∞.

It produces the result. □

We Proof of lemma 4.12;

Proof. We can infer from the compactness of ℘ that there is a sequence of real
numbers (yk)k=1,...,dn

such that

℘ ⊂
dn⋃
k=1

℘k, where ℘k = (yk − ln, yk + ln), and ln = n−1−α and dn = O(ln − 1).

With the following decomposition, we begin our proof:

sup
y∈℘

∣∣∣f̂x
1 (y)− f

x

1(y)
∣∣∣

≤ sup
y∈℘

∣∣∣f̂x
1 (y)− f̂x

1 (z)
∣∣∣︸ ︷︷ ︸

S1

+sup
y∈℘

∣∣∣f̂x
1 (z)− f

x

1(z)
∣∣∣︸ ︷︷ ︸

S2

+sup
y∈℘

∣∣∣fx

1(z)− f
x

1(y)
∣∣∣︸ ︷︷ ︸

S3

.

We now define the three concepts.
On the one hand, for the concept S1, by utilizing hypothesis (H5), we have

S1 ≤ sup
y∈℘

∣∣∣∣∣ 1

nhHE(Γ1K1)

n∑
i=1

ΓiKi|Hi(y)−Hi(z)|

∣∣∣∣∣
≤ sup

y∈℘

C|y − z|
hH

(∣∣∣∣∣ 1

nhHE(Γ1K1)

n∑
i=1

ΓiKi

∣∣∣∣∣
)

≤ C
ln
h2
H

|f̂x
0 (y)|.
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Thus, using Lemma 4.11, we get S1 ≤ C ln
h2
H
.

Since ln = n−1−α, we obtain ln
h2
H

= O
(√

φx(hK) log(n)
n2hHϕ2

x(hK)

)
.

Consequently, for n big enough, we discover a η > 0 such that

P

(
S1 > η

√
φx(hK) log(n)

n2hHϕ2
x(hK)

)
= 0. (24)

Results similar to the concept of S3 were : S3 ≤ C ln
h2
H
|fx

0(y)|.
Therefore, Lemma 4.14 allows us to wtite: S3 ≤ C ln

h2
H
.

We can find the following for similar arguments as S1:

P

(
S3 > η

√
φx(hK) log(n)

n2hHϕ2
x(hK)

)
= 0. (25)

On the other hand, in order to finish the proof of this Lemma, we must demon-
strate that

S2 = O

(√
φx(hK) log(n)

n2hHϕ2
x(hK)

)
a.co.

By using 23 for k = 1, we get for η > 0 and for all z ∈ ℘k:

P

(∣∣∣f̂x
1 (z)− f

x

1(z)
∣∣∣ > η

√
φx(hK) log(n)

n2hHϕ2
x(hK)

)
≤ C ′n−C0η

2

.

Thus, we have

P

(
sup
y∈℘

∣∣∣f̂x
1 (z)− f

x

1(z)
∣∣∣ > η

√
φx(hK) log(n)

n2hHϕ2
x(hK)

)

≤ P

(
max
z∈℘

∣∣∣f̂x
1 (z)− f

x

1(z)
∣∣∣ > η

√
φx(hK) log(n)

n2hHϕ2
x(hK)

)

≤ 2dn max
z∈℘

P

(∣∣∣f̂x
1 (z)− f

x

1(z)
∣∣∣ > η

√
φx(hK) log(n)

n2hHϕ2
x(hK)

)
≤ C ′n−C0η

2+1+α.

Therefore, by choosing η such that C0η
2 = 2 + 2α, we find that

P

(
sup
y∈℘

∣∣∣f̂x
1 (z)− f

x

1(z)
∣∣∣ > η

√
φx(hK) log(n)

n2hHϕ2
x(hK)

)
≤ C ′n−1−α. (26)

Last but not least, Lemma 4.12 is directly extract from formulae 24, 25 and
26. □

The Proof of theorem 4.4;
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Proof. Directly from Theorem 4.2, which we have previously proved, that
∞∑

n=1

P{|F̂ x(y)− F x(y)| > ε} < ∞.

On the other hand, under the condition inf
y∈S

(1− F x(y)) > β, we choose δ =
β

2
,

to show
P{ inf

y∈S
|1− F̂ x(y)| ≤ δ} < ∞.

□

and the proof of Theorem 4.1 is now completed.

5. Numerical Simulation

In this section, we conduct several numerical experiments on the conditional
hazard function in a prediction context. In another sense, we use the mean square
error (MSE) as a criterion to demonstrate the performance and superiority of
our estimator . In order to do this, we compare the (MSE) of the local linear
approch (L.L), which is the subject of this study, to the kernel method (K.M),
where the data in the following simulation are of a functional ergodic type. For
that, we define the two models using the formula below:

ĥx
L.L(y) =

h−1
H

∑n
i=1 ΓiKiHi∑n

i=1 ΓiKi −
∑n

i=1 ΓiKiHi
, ĥx

K.M (y) =
h−1
H

∑n
i=1 KiHi∑n

i=1 Ki −
∑n

i=1 KiHi
.

To do this, we construct the random variables (Xi, Yi)i=1,...,1000 using the fol-
lowing regression model:

Yi = r(Xi) + εi,

where εi ∼ N (0, 0.3), and r is a operator is given by:

r(Xi) =
1

5(
∫ 1

0
Xi(t)dt)2

For any t ∈ [0, 1], the process Xi(t) is defined as follows:

Xi(t) = ait+ cos(ζi − t)

where ai (respectively,ζi)is uniformly distributed U [0, 1] (respectively, normally
distributed N (0, 0.3)).
Our method for calculating the empirical mean square error is:

MSE(K.M) =
1

n

n∑
i=1

(Yi−ĥx
K.M (y))2 and MSE(L.L) =

1

n

n∑
i=1

(Yi−ĥx
L.L(y))

2

We obtain the curve which represents the conditional hazard function and its
estimator by the method of kernels and by the linear local method with the
smoothing parameter h = 0.1(see figure 1), then with the smoothing parameter
h = 0.2 in figure 2.
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Figure 1. The conditional hazard function and its estimator
by the kernel method and by the local linear method for h =0.1

Figure 2. The conditional hazard function and its estimator
by the kernel method and by the local linear method for h =0.2

The comparison in the two previous figures indicates that the linear local
approach (L.L) gives better results than the classical kernel method(K.M). This
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is confirmed by the mean square error (MSE) for deferent smoothing parameter
values ”h” as shown in the following table 1:

Table 1. The empirical mean square error results of the two
estimation methods for deferent smoothing parameter

The parameter (h) 0.15 0.20 0.25 0.30
MSE(K.M) 0.0149 0.0193 0.0220 0.0235
MSE(L.L) 0.0053 0.0055 0.0056 0.0060

6. Conclusion

In this study, we have treated the nonparametric estimation techniques of the
conditional hazard function. We used the local linear method to estimate the
hazard function. This method is mainly used to evaluate the performance of the
estimator. The main results we have established are the almost complete conver-
gence speed of the conditional hazard function, the empirical density function,
and the distribution function by specifying its convergence speed for functional
ergodic data. We also presented the asymptotic properties of each functional
model. In addition, we have built a local linear estimator of the hazard function
and we carry out simulations using the python software which allows us to ob-
serve the influence of the parameter of smoothing (h) on the method of kernels
and local linear.
Note that MSE(L.L) is less than MSE(K.M). This result indicates the efficacy
of our approach.

Conflicts of interest : The authors declare no conflict of interest.

Data availability : The data that were utilized in this work are included in
the article.
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