• Title/Summary/Keyword: Linear dynamic systems

Search Result 798, Processing Time 0.039 seconds

Properties of the Load-Sensing Hydraulic System from a Viewpoint of Control (제어관점에서의 부하감지형 유압시스템의 특성)

  • 김성동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.738-750
    • /
    • 1994
  • The load-sensing hydraulic system which was developed to improve energy efficiency of conventional hydraulic systems has its own properties. The instability of system responses, linearity of a servo valve, robustness for variation of external load, and dynamic interference between hydraulic motors are such properties which have much to do with control properties of the system. The load-sensing hydraulic system has instability tendancy because the load-sensing mechanism makes a positive feedback loop between the motor part and the pump part. A flow property of the servo valve can be said to be linear because the flow through the valve has nothing to do with a load pressure and the flow is strictly proportional to a valve opening which is adjusted by a valve command signal. The resultant control property can be said to be robust because the steady-state control performance is independent to the load actuated on the motor shaft. In the case when one pump simultaneously drives more than two hydraulic motors, the pump outlet pressure is determined by a hydraulic motor of the largest load pressure among all of the hydraulic motors, and, thus, the other motors are dominated by the largest load pressure. That is, the other motors can be said to be interfered by the motor of the largest load pressure.

Secure Outsourced Computation of Multiple Matrix Multiplication Based on Fully Homomorphic Encryption

  • Wang, Shufang;Huang, Hai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5616-5630
    • /
    • 2019
  • Fully homomorphic encryption allows a third-party to perform arbitrary computation over encrypted data and is especially suitable for secure outsourced computation. This paper investigates secure outsourced computation of multiple matrix multiplication based on fully homomorphic encryption. Our work significantly improves the latest Mishra et al.'s work. We improve Mishra et al.'s matrix encoding method by introducing a column-order matrix encoding method which requires smaller parameter. This enables us to develop a binary multiplication method for multiple matrix multiplication, which multiplies pairwise two adjacent matrices in the tree structure instead of Mishra et al.'s sequential matrix multiplication from left to right. The binary multiplication method results in a logarithmic-depth circuit, thus is much more efficient than the sequential matrix multiplication method with linear-depth circuit. Experimental results show that for the product of ten 32×32 (64×64) square matrices our method takes only several thousand seconds while Mishra et al.'s method will take about tens of thousands of years which is astonishingly impractical. In addition, we further generalize our result from square matrix to non-square matrix. Experimental results show that the binary multiplication method and the classical dynamic programming method have a similar performance for ten non-square matrices multiplication.

Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures

  • Katafygiotis, Lambros;Moan, Torgeir;Cheungt, Sai Hung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.347-363
    • /
    • 2007
  • A novel methodology, referred to as Auxiliary Domain Method (ADM), allowing for a very efficient solution of nonlinear reliability problems is presented. The target nonlinear failure domain is first populated by samples generated with the help of a Markov Chain. Based on these samples an auxiliary failure domain (AFD), corresponding to an auxiliary reliability problem, is introduced. The criteria for selecting the AFD are discussed. The emphasis in this paper is on the selection of the auxiliary linear failure domain in the case where the original nonlinear reliability problem involves multiple objectives rather than a single objective. Each reliability objective is assumed to correspond to a particular response quantity not exceeding a corresponding threshold. Once the AFD has been specified the method proceeds with a modified subset simulation procedure where the first step involves the direct simulation of samples in the AFD, rather than standard Monte Carlo simulation as required in standard subset simulation. While the method is applicable to general nonlinear reliability problems herein the focus is on the calculation of the probability of failure of nonlinear dynamical systems subjected to Gaussian random excitations. The method is demonstrated through such a numerical example involving two reliability objectives and a very large number of random variables. It is found that ADM is very efficient and offers drastic improvements over standard subset simulation, especially when one deals with low probability failure events.

Modelling aspects of the seismic response of steel concentric braced frames

  • D'Aniello, M.;La Manna Ambrosino, G.;Portioli, F.;Landolfo, R.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.539-566
    • /
    • 2013
  • This paper summarises the results of a numerical study on the non linear response of steel concentric braced frames under monotonic and cyclic loads, using force-based finite elements with section fibre discretisation. The first part of the study is addressed to analyse the single brace response. A parametric analysis was carried out and discussed to evaluate the accuracy of the model, examining the influence of the initial camber, the material modelling, the type of force-based element, the number of integration points and the number of fibers. The second part of the paper is concerned with the modelling issues of whole braced structures. The effectiveness of the modelling approach is verified against the nonlinear static and dynamic behaviour of different type of bracing configurations. The model sensitivity to brace-to-brace interaction and the capability of the model to mimic the response of complex bracing systems is analyzed. The influence of different approaches for modelling the inertia, the equivalent viscous damping and the brace hysteretic response on the overall structural response are also investigated. Finally, on the basis of the performed numerical study general modelling recommendations are proposed.

Development of Algorithm for Maximum Power Point Tracking of PV system (PV 시스템의 최대출력점 추정을 위한 알고리즘 개발)

  • Park, Ki-Tae;Ko, Jae-Sub;Choi, Jung-Sik;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.316-321
    • /
    • 2007
  • This paper is proposed a novel method to approximate the maximum power for a photovoltaic inverter system and tracking method. It is designed for power systems application and utilities. The proposed Maximum Power Point Tracking(MPPT) control has the advantage to provide a new simple way to approximate the optimal or rated voltage, the optimal or rated current and maximum power rating produced by a solar panel and the photovoltaic inverter. And this straightforward method will be named linear reoriented coordinates method(LRCM) with the advantage that Pmax and $V_{op}$ can be approximated using the satre variable as the dynamic model without using complicate approximations or Taylor series. Furthermore tracking method is improved over 50% photovoltaic efficiency. This paper is proposed MPPT using LRMC and tracking method using weather condition of domestic moderate program technique. This paper is proposed the experimental results to verify the effectiveness of the new methods.

  • PDF

A Novel Enhanced Decision-Directed Channel Estimation Scheme in High-Speed Mobile Environments (고속 이동 전파환경에서 결정지향 채널 추정 기법의 개선)

  • Ren, Yongzhe;Park, Dong Chan;Kim, Suk Chan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.29-32
    • /
    • 2015
  • It has been a big trend of the convergence technologies about communication systems and vehicular industry to improve safety and convenience. To achieve a number of infotainment vehicular applications, vehicles should transmit information with high reliability. A robust and accurate channel estimation scheme is of great importance to achieve the goal. In this paper, we present a novel enhanced decision-directed channel estimation scheme called FADP (Frequency Averaging Data Pilot) for dynamic time-varying vehicular channels in IEEE 802.11p. We use linear averaging filtering in frequency domain, and utilize the correlation characteristic of the channels between the adjacent two data symbols, update the CR in time domain to get more accuracy. Finally, analysis and simulation results reveal that compared with exist schemes, the proposed scheme has a good performance in mean square error (MSE) and bit error rate (BER).

A Parallel Machine Scheduling Problem with Outsourcing Options (아웃소싱을 고려한 병렬기계 일정계획 연구)

  • Lee, Ik-Sun;Yoon, Sang-Hum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.101-109
    • /
    • 2008
  • This paper considers an integrated decision for scheduling and outsourcing(or, subcontracting) of a finite number of jobs(or, orders) in a time-sensitive make-to-order manufacturing environment. The jobs can be either processed in a parallel in-house facilities or outsourced to subcontractors. We should determine which jobs should be processed in-house and which jobs should be outsourced. And, we should determine the schedule for the jobs to be processed in-house. If a job is determined to be processed in-house, then the scheduling cost(the completion time of the Job) is imposed. Otherwise(if the job should be outsourced), then an additional outsourcing cost is imposed. The objective is to minimize the linear combination of scheduling and outsourcing costs under a budget constraint for the total available outsourcing cost. In the problem analysis, we first characterize some solution properties and then derive dynamic programming and branch-and- bound algorithms. An efficient heuristic is also developed. The performances of the proposed algorithms are evaluated through various numerical experiments.

Comparison of shear lag in structural steel building with framed tube and braced tube

  • Mazinani, Iman;Jumaat, Mohd Zamin;Ismail, Z.;Chao, Ong Zhi
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.297-309
    • /
    • 2014
  • Under lateral loads Framed Tube (FT) system exhibits reduction of cantilever efficiency due to the effect of shear lag. Braced Tube (BT) represents a valuable solution to overcome shear lag problems by stiffening the exterior frame with diagonal braced members. This study investigates the effect of shear lag on BT and FT under wind load. Shear lag and top-level displacement results are compared with previous findings by researchers on FT and BT systems. The investigation of the effect of various configurations in BT on the reduction the shear lag is another objective of this study. The efficiency of each structure is evaluated using the linear response spectrum analysis to obtain shear lag. STADD Pro software is used to run the dynamic analysis of the models. Results show there is relatively less shear lag in all the BT configurations compared to the FT structural system. Moreover, the comparison of the obtained result with those derived by previous studies shows that shear lag is not proportional to lateral displacement. With respect to results, optimum BT configuration in term of lower shear lag caused by lateral loads is presented.

High-Precision Control of Magnetic Levitation System

  • Jeon, Jeong-Woo;Caraiani, Mitica;Lee, Ki-Chang;Hwang, Don-Ha;Lee, Joo-Hoon;Kim, Yong-Joo;Nam, Taek-Kun;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2575-2580
    • /
    • 2005
  • In this paper, we address two position control scheme; the lead-lag control and the sliding mode control for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived simply. The sliding mode control algorithm is more effective than the lead-lag control algorithm to reduce effects from movements and disturbances of other axis.

  • PDF

Multi-point displacement monitoring of bridges using a vision-based approach

  • Ye, X.W.;Yi, Ting-Hua;Dong, C.Z.;Liu, T.;Bai, H.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.315-326
    • /
    • 2015
  • To overcome the drawbacks of the traditional contact-type sensor for structural displacement measurement, the vision-based technology with the aid of the digital image processing algorithm has received increasing concerns from the community of structural health monitoring (SHM). The advanced vision-based system has been widely used to measure the structural displacement of civil engineering structures due to its overwhelming merits of non-contact, long-distance, and high-resolution. However, seldom currently-available vision-based systems are capable of realizing the synchronous structural displacement measurement for multiple points on the investigated structure. In this paper, the method for vision-based multi-point structural displacement measurement is presented. A series of moving loading experiments on a scale arch bridge model are carried out to validate the accuracy and reliability of the vision-based system for multi-point structural displacement measurement. The structural displacements of five points on the bridge deck are measured by the vision-based system and compared with those obtained by the linear variable differential transformer (LVDT). The comparative study demonstrates that the vision-based system is deemed to be an effective and reliable means for multi-point structural displacement measurement.