• Title/Summary/Keyword: Linear Stability Equation

Search Result 263, Processing Time 0.027 seconds

OSCILLATION AND ASYMPTOTIC STABILITY BEHAVIOR OF A THIRD ORDER LINEAR IMPULSIVE EQUATION

  • WAN ANHUA;MAO WEIHUA
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.405-417
    • /
    • 2005
  • In this paper, the oscillation and asymptotic stability behavior of a third order linear impulsive equation are investigated. A lemma is presented to deal with the sign relation of the nonoscillatory solutions and their derived functions. By the lemma explicit sufficient conditions are obtained for all solutions either oscillating or asymptotically tending to zero. Two illustrative examples are proposed to demonstrate the effectiveness of the conditions.

On the hyers-ulam-rassias stability of the equation $f( -

  • Jung, Soon-Mo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.513-519
    • /
    • 1996
  • The stability problem of functional equations has been originally raised by S. M. Ulam. In 1940, he posed the following problem: Give conditions in order for a linear mapping near an approximately additive mapping to exist (see [9]).

  • PDF

A Frozen Time Receding Horizon Control for a Linear Discrete Time-Varying System (선형 이산 시변시스템을 위한 고정시간 이동구간 제어)

  • Oh, Myung-Hwan;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • In the case of a linear time-varying system, it is difficult to apply the conventional stability conditions of RHC (Receding Horizon Control) to real physical systems because of computational complexity comes from time-varying system and backward Riccati equation. Therefore, in this study, a frozen time RHC for a linear discrete time-varying system is proposed. Since the proposed control law is obtained by time-invariant Riccati equation solved by forward iterations at each control time, its stability can be ensured by matrix inequality condition and the stability condition based on horizon for a time-invariant system, and they can be applied to real physical systems effectively in comparison with the conventional RHC.

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.

Stability of Switched Linear Systems Using Upper Bounds of Solutions of Lyapunov Matrix Equations (리야프노프 행렬 방정식의 해를 이용한 스위칭 선형시스템의 안정화)

  • Yeom, Dang-Hae;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.20-22
    • /
    • 2005
  • In this paper, we propose a novel stability criterion for switched linear systems. The proposed method employs the results on the upper bound of the solution of LME(Lyapunov Matrix Equation) and on the stability of hybrid system. The former guarantees the existence of Lyapunov-like energy functions and the latter shows that the stability of switched linear systems by using these energy functions. The proposed criterion releases the restriction on the stability of switched linear systems comparing with the existing methods and provides us with easy implementation way for pole assignment.

  • PDF

APPROXIMATELY ADDITIVE MAPPINGS OVER p-ADIC FIELDS

  • Park, Choonkil;Boo, Deok-Hoon;Rassias, Themistocles M.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • In this paper, we prove the Hyers-Ulam-Rassias stability of the Cauchy functional equation f(x+y) = f(x)+f(y) and of the Jensen functional equation $2f(\frac{x+y}{2})=f(x)+f(y)$ over the p-adic field ${\mathbb{Q}}_p$. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

  • PDF

EXPONENTIAL STABILITY OF INFINITE DIMENSIONAL LINEAR SYSTEMS

  • Shin, Chang Eon
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.603-611
    • /
    • 2016
  • In this paper, we show that if $\mathcal{A}$ is a differential subalgebra of Banach algebras $\mathcal{B}({\ell}^r)$, $1{\leq}r{\leq}{\infty}$, then solutions of the infinite dimensional linear system associated with a matrix in $\mathcal{A}$ have its p-exponential stability being equivalent to each other for different $1{\leq}p{\leq}{\infty}$.

REMARKS ON THE STABILITY OF ADDITIVE FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Kim, Hark-Mahn
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.679-687
    • /
    • 2001
  • In this paper, using an idea from the direct method of Hyers, we give the conditions in order for a linear mapping near an approximately additive mapping to exist.

  • PDF

HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE

  • Oubbi, Lahbib
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.767-782
    • /
    • 2013
  • We deal with the Hyers-Ulam stability problem of linear mappings from a vector space into a Banach one with respect to the following functional equation: $$f\(\frac{-x+y}{3}\)+f\(\frac{x-3z}{3}\)+f\(\frac{3x-y+3z}{3}\)=f(x)$$. We then combine this equation with other ones and establish the Hyers-Ulam stability of several kinds of linear mappings, among which the algebra (*-) homomorphisms, the derivations, the multipliers and others. We thus repair and improve some previous assertions in the literature.