• 제목/요약/키워드: Linear Quadratic Controller

검색결과 252건 처리시간 0.025초

불확정성 선형 시스템의 강인 성능 보장 제어 (Robust Guaranteed Performance Control of Uncertain Linear Systems)

  • 김진훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.553-559
    • /
    • 1999
  • The robust control problem of the linear systems with uncertainty is classified as the robust stability problem guaranteeing the stability and the robust performance problem guaranteeing the disired performance. In this paper, we considered the robust performance analysis problem, which find the upper buund of the quadratic performance of the uncertain linear system, and the robust guaranteed performance controller design problem which design a controller guaranteeing the desired quadratic performance. At first, we treated the analysis problem and presented the two results; one is dependent on the performance of the nominal system and another is independent on this. And we treated the design method guaranteeing the desired performance for the uncertain linear systems, Finally, we show the usefulness of our results by numerical examples.

  • PDF

Angle and Position Control of Inverted Pendulum on a Cart Using Partial Feedback Linearization

  • Yeom, Dong-Hae;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1382-1386
    • /
    • 2003
  • In this paper, we propose a controller for the position of a cart and the angle of a pendulum. To achieve both purposes simultaneously, we divide the system into the dominant subsystem and the dominated one after partial feedback linearization. The proposed controller is composed of a nonlinear controller stabilizing the dominant subsystem and a linear quadratic controller. Using the proposed controller, the controllable region is increased by the nonlinear control part and the control input minimized by the linear control part (LQR).

  • PDF

Robust ILQ controller design of hot strip mill looper system

  • Kim, Seong-Bae;Hwang, I-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.75.5-75
    • /
    • 2001
  • In this paper, we study design of a ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between stands plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. A Looper servo controller is designed by ILQ control theory which is an inverse problem of LQ(Linear Quadratic optimal control) control. The mathematical model for looper system is obtained by Taylor´s linearization of nonlinear differential equations. Then we designed linear controller for linearization model by using the ILQ control algorithm. Thereafter this controller is applied to the nonlinear model for model identification. As a result, we show the controller´s robustness for the model error, external disturbance and sensor noise.

  • PDF

누적방지 무충돌전환을 위한 새로운 통합형 기법 (A New Unified Method for Anti-windup and Bumpless Transfer)

  • 김태신;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.655-660
    • /
    • 2009
  • In many real applications, the discrepancy problem between controller outputs and plant inputs or the abrupt variation problem of controller outputs can occur. These problems have a negative effect on control performance and stability. It is well-known that two phenomena called 'windup' and 'bump' cause these problems. So far these problems have been studied separately in each side of the anti-windup and the bumpless transfer. This paper proposes a new unified method combines the anti-windup and the bumpless transfer method using the linear quadratic minimization and a proper state space model representation for the anti-windup controller. The proposed method has a feature that it takes account of both the anti-windup and the bumpless transfer in one formula. Finally, we exemplify the performance of the proposed method via numerical examples using the controller switching between the anti-windup PID controller and the anti-windup LQ controller.

지연귀환을 통한 불확실 시간지연 시스템의 비약성 성능보장 제어기 설계 (Non-fragile Guaranteed Cost Controller Design for Uncertain Time-delay Systems via Delayed Feedback)

  • 권오민;박주현
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.458-465
    • /
    • 2008
  • In this paper, we propose a non-fragile guaranteed cost controller design method for uncertain linear systems with constant delyas in state. The norm bounded and time-varying uncertainties are subjected to system and controller design matrices. A quadratic cost function is considered as the performance measure for the system. Based on the Lyapunov method, an LMI(Linear Matrix Inequality) optimization problem is established to design the controller which uses information of delayed state and minimizes the upper bound of the quadratic cost function for all admissible system uncertainties and controller gain variations. Numerical examples show the effectiveness of the proposed method.

불확실성이 있는 이산 시간 시스템의 강인 제어기 설계 (Robust stabilization of linear discrete time systems with uncertain dynamics)

  • 이재원;이준화;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.742-746
    • /
    • 1992
  • This paper proposes a new linear robust state feedback controller for the linear discrete time systems which have uncertainties in the state and input matrices. The uncertainties need not satisfy the matching conditions, but only their bounds are needed to be known. The proposed controller is derived from the linear quadratic game problem, which solution is obtained via the modified algebraic Riccati equation. The controller guarantees the robust performance bound. The bound of the solution and the condition of the uncertainties, which can stabilize the uncertain system are explored.

  • PDF

동작점 변화 조건에서의 풍력터빈 선형 피치제어기 설계 (Design of Linear Pitch Controller in Wind Turbine under the condition of Varying Operating Points)

  • 천종민;김춘경;이주훈;홍지태;권순만
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • This paper presents a pitch controller which can hold output power constant at the rated value. Although wind turbine contains complicated nonlinearities, its behaviour within a certain operating range of a point can be approximated by that of a linear model. By doing so, we can apply rather simple and systematic linear control techniques such as PID and LQR(Linear Quadratic Regulator) to design a linear pitch controller. Because these linear controllers are valid only in a sufficiently small range around an operating point, linearized wind turbine model under the condition of varying wind speed needs a linear pitch controller can achieve the aims of tracking the rated rotor rotational speed. We propose an improved linear pitch controller taking each merit of LQR and PI controller under the condition of varying operating points in this paper.

  • PDF

비전 센서를 이용한 쿼드로터형 무인비행체의 목표 추적 제어 (Target Tracking Control of a Quadrotor UAV using Vision Sensor)

  • 유민구;홍성경
    • 한국항공우주학회지
    • /
    • 제40권2호
    • /
    • pp.118-128
    • /
    • 2012
  • 본 논문은 쿼드로터형 무인 비행체를 비전센서를 이용한 목표 추적 위치 제어기 설계하였고, 이를 시뮬레이션 및 실험을 통해서 확인하였다. 우선 제어기 설계에 앞서 쿼드로터의 동역학 분석 및 실험데이터를 통한 모델링을 수행하였다. 이때, 모델의 계수들은 실제 비행 데이터를 이용한 PEM(Prediction Error Method)을 이용하여 얻었다. 이 추정된 모델을 바탕으로 LQR(Linear Quadratic Regulator) 기법을 이용한 임의의 목표를 따라가는 위치 제어기를 설계하였으며, 이때 위치 정보는 비전센서의 색 정보를 이용한 Color Tracking기능을 이용하여 쿼드로터와 물체의 상대적인 위치를 얻어내었고, 초음파 센서를 이용하여 고도 정보를 얻어 내었다. 마지막으로 실제 움직이는 물체의 추적 제어 실험을 수행하여 LQR 제어기 성능을 평가하였다.

Optimal Speed Control of Hybrid Electric Vehicles

  • Yadav, Anil Kumar;Gaur, Prerna;Jha, Shyama Kant;Gupta, J.R.P.;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.393-400
    • /
    • 2011
  • The main objective of this paper is to control the speed of Nonlinear Hybrid Electric Vehicle (HEV) by controlling the throttle position. Various control techniques such as well known Proportional-Integral-Derivative (PID) controller in conjunction with state feedback controller (SFC) such as Pole Placement Technique (PPT), Observer Based Controller (OBC) and Linear Quadratic Regulator (LQR) Controller are designed. Some Intelligent control techniques e.g. fuzzy logic PD, Fuzzy logic PI along with Adaptive Controller such as Self Organizing Controller (SOC) is also designed. The design objective in this research paper is to provide smooth throttle movement, zero steady-state speed error, and to maintain a Selected Vehicle (SV) speed. A comparative study is carried out in order to identify the superiority of optimal control technique so as to get improved fuel economy, reduced pollution, improved driving safety and reduced manufacturing costs.

Hybrid Fuzzy Learning Controller for an Unstable Nonlinear System

  • Chung, Byeong-Mook;Lee, Jae-Won;Joo, Hae-Ho;Lim, Yoon-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.79-83
    • /
    • 2000
  • Although it is well known that fuzzy learning controller is powerful for nonlinear systems, it is very difficult to apply a learning method if they are unstable. An unstable system diverges for impulse input. This divergence makes it difficult to learn the rules unless we can find the initial rules to make the system table prior to learning. Therefore, we introduced LQR(Linear Quadratic Regulator) technique to stabilize the system. It is a state feedback control to move unstable poles of a linear system to stable ones. But, if the system is nonlinear or complicated to get a liner model, we cannot expect good results with only LQR. In this paper, we propose that the LQR law is derived from a roughly approximated linear model, and next the fuzzy controller is tuned by the adaptive on-line learning with the real nonlinear plant. This hybrid controller of LQR and fuzzy learning was superior to the LQR of a linearized model in unstable nonlinear systems.

  • PDF