Let K, H, KII and HII be the Gaussian curvature, the mean curvature, the second Gaussian curvature and the second mean curvature of a timelike tubular surface Tγ(α) with the radius γ along a timelike curve α(s) in Minkowski 3-space E31. We prove that Tγ(α) must be a (K, H)-Weingarten surface and a (K, H)-linear Weingarten surface. We also show that Tγ(α) is (X, Y)-Weingarten type if and only if its central curve is a circle or a helix, where (X, Y) ∈ {(K, KII), (K, HII), (H, KII), (H, HII), (KII , HII)}. Furthermore, we prove that there exist no timelike tubular surfaces of (X, Y)-linear Weingarten type, (X, Y, Z)-linear Weingarten type and (K, H, KII, HII)-linear Weingarten type along a timelike curve in E31, where (X, Y, Z) ∈ {(K, H, KII), (K, H, HII), (K, KII, HII), (H, KII, HII)}.