• 제목/요약/키워드: Line to Line Fault Location

검색결과 136건 처리시간 0.03초

평형 2회선 송전 계통의 1선지락시 고장점 표정 알고리즘 (Parallel Transmission Lines Fault location Algorithm for single line-to-ground fault)

  • 양하;최면송;이승재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.317-319
    • /
    • 2006
  • This paper proposes a fault location algorithm for two-parallel transmission line in the case of single line-to-ground fault Proposed algorithm is using voltage and current measured in the sending-end. The fault distance is simply determined by solving a second order polynomial equation due to the direct circuit analysis. The simulations by PSCAD/EMTDC have demonstrated the accuracy and effectiveness of the proposed algorithm.

  • PDF

자기단 전원임피던스 추정을 이용한 송전선 고장점표정 알고리즘 (Transmission Line Fault Location Algorithm Using Estimated Local Source Impedance)

  • 권영진;김수환;강상희
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.885-890
    • /
    • 2009
  • A fault location algorithm using estimated local source impedance after a fault is proposed in this paper. The method uses after fault data only at the local end. It uses the negative sequence current distribution factor for more accurate estimation. The proposed algorithm can keep up with the variation of the local source impedance. Therefore, the proposed algorithm especially is valid for a transmission line interconnected to a wind farm that the equivalent source impedance changes continuously. The performance of the proposed algorithm was verified under various fault conditions using the Simpowersystem of MATLAB Simulink. The proposed algorithm is largely insensitive to the variation in fault distance and fault resistance. The test results show a very high accurate performance.

병행 2회선의 T분기 선로 고장점 표정 알고리즘 (Fault Location Algorithm for Parallel Transmission Line with a Teed Circuit)

  • 권영진;강상희;이승재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.49-51
    • /
    • 2000
  • This paper presents a fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line. This algorithm uses only local end voltage and current information. Remote end and fault currents are calculated by using distribution factors. To reduce load current effect, negative sequence current is used. EMTP simulation result have shown effectiveness of the algorithm under various conditions.

  • PDF

Fault Location and Classification of Combined Transmission System: Economical and Accurate Statistic Programming Framework

  • Tavalaei, Jalal;Habibuddin, Mohd Hafiz;Khairuddin, Azhar;Mohd Zin, Abdullah Asuhaimi
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2106-2117
    • /
    • 2017
  • An effective statistical feature extraction approach of data sampling of fault in the combined transmission system is presented in this paper. The proposed algorithm leads to high accuracy at minimum cost to predict fault location and fault type classification. This algorithm requires impedance measurement data from one end of the transmission line. Modal decomposition is used to extract positive sequence impedance. Then, the fault signal is decomposed by using discrete wavelet transform. Statistical sampling is used to extract appropriate fault features as benchmark of decomposed signal to train classifier. Support Vector Machine (SVM) is used to illustrate the performance of statistical sampling performance. The overall time of sampling is not exceeding 1 1/4 cycles, taking into account the interval time. The proposed method takes two steps of sampling. The first step takes 3/4 cycle of during-fault and the second step takes 1/4 cycle of post fault impedance. The interval time between the two steps is assumed to be 1/4 cycle. Extensive studies using MATLAB software show accurate fault location estimation and fault type classification of the proposed method. The classifier result is presented and compared with well-established travelling wave methods and the performance of the algorithms are analyzed and discussed.

Two-Terminal Numerical Algorithm for Single-Phase Arcing Fault Detection and Fault Location Estimation Based on the Spectral Information

  • Kim, Hyun-Houng;Lee, Chan-Joo;Park, Jong-Bae;Shin, Joong-Rin;Jeong, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.460-467
    • /
    • 2008
  • This paper presents a new numerical algorithm for the fault location estimation and arcing fault detection when a single-phase arcing ground fault occurs on a transmission line. The proposed algorithm derived in the spectrum domain is based on the synchronized voltage and current samples measured from the PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. In this paper, the algorithm uses DFT(Discrete Fourier Transform) for estimation. The algorithm uses a short data window for real-time transmission line protection. Also, from the calculated arc voltage amplitude, a decision can be made whether the fault is permanent or transient. The proposed algorithm is tested through computer simulation to show its effectiveness.

A Study on the Gustafson-Kessel Clustering Algorithm in Power System Fault Identification

  • Abdullah, Amalina;Banmongkol, Channarong;Hoonchareon, Naebboon;Hidaka, Kunihiko
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1798-1804
    • /
    • 2017
  • This paper presents an approach of the Gustafson-Kessel (GK) clustering algorithm's performance in fault identification on power transmission lines. The clustering algorithm is incorporated in a scheme that uses hybrid intelligent technique to combine artificial neural network and a fuzzy inference system, known as adaptive neuro-fuzzy inference system (ANFIS). The scheme is used to identify the type of fault that occurs on a power transmission line, either single line to ground, double line, double line to ground or three phase. The scheme is also capable an analyzing the fault location without information on line parameters. The range of error estimation is within 0.10 to 0.85 relative to five values of fault resistances. This paper also presents the performance of the GK clustering algorithm compared to fuzzy clustering means (FCM), which is particularly implemented in structuring a data. Results show that the GK algorithm may be implemented in fault identification on power system transmission and performs better than FCM.

AT급전계통에서 실제 운행 중인 전기기관차 부하를 이용한 고장점 표정 알고리즘 보정계수 산출 방법 (Calculation Method of Modification Factors for Fault Location Algorithm Using Boosting Current of Operating Electric Train in AT Feeding System)

  • 김철환;김성렬;권성일;조규정;김철환;송인근
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.504-510
    • /
    • 2016
  • In general, a fault locator is installed in Sub-Station of AT(Auto-transformer) feeding system to estimate the fault location and to protect the Korean AT feeding system. Since the line impedance characteristic is different to normal 3-phase transmission line, we need particular modification factors, which can be calculated using fault location recording data, to estimate the accurate fault location. Up to recently, forcible ground test has been used to calculate the modification factors of the fault locator. However, large amount of current is occurred when the forcible ground test is performed, and this current affects to adjacent equipments. Therefore, we proposed a novel calculation method of modification factors, arbitrary trip test, using boosting current of the operating electric train. Through several field test, we confirmed that modification factors for fault locator can be easily calculated by using proposed method. Moreover, we verified the accuracy and stability of the proposed calculation method.

병행 2회선 송전선로에서의 고장점 표정 알고리즘 (A Fault Location Algorithm of a Double-Circuit Line)

  • 안용진;최면송;강상희;이승재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.255-257
    • /
    • 1999
  • Fault location algorithms based on the current distribution factors under the one-phase to earth fault condition of a double-circuit line are presented. The derivation method for current distribution factors is showed, to calculate fault current, fault resistance and the zero sequence current of other parallel circuit which are unknown. As the proposed algorithms 1,2,3 embodies an accurate location by the voltage and the current of the relaying point.

  • PDF

송전선로에서의 고저항 지락고장시 고장거리 추정에 관한 알고리즘 (A Fault Location Algorithm for Transmission Lines in the High-Resistance Fault)

  • 박홍규;이명수;이재규;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1363-1365
    • /
    • 1999
  • This paper Presents an algorithm for the computation of fault location for a transmission line by means of the voltage and current signals. It is impossible to calculate the accurate fault distance, because of the fault resistance and fault current which are unknown. All Currents in the lines are divided by the current distribution factor, so the fault current through the fault resistance can be represented by using data from one terminal of transmission line. This algorithm proposed can calculate the fault distance with only the faulty phase information.

  • PDF

지증 배전계통을 위한 1선지락 고장거리계산 방법 (A Line-to-ground Cable Fault Location Method for Underground Distribution System)

  • 양하;이덕수;최면송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.329-331
    • /
    • 2005
  • This paper proposes a line-to-ground cable fault location method for underground distribution system. The researched cable is composed of core and sheath. And underground cabke system has been analyzed using Distributed Parameter Circuit. The effectiveness of proposed algorithm has been verified through EMTDC simulations.

  • PDF