• Title/Summary/Keyword: Line capacity

Search Result 1,075, Processing Time 0.028 seconds

Interface between Common earth and Individual earth on the Track circuit (궤도회로에서의 공동접지와 단독접지 인터페이스)

  • LEE Gil-Lo;KIM Yong-Kyu;KIM Jong-Ki;KIM Hak-Ryoun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.269-274
    • /
    • 2005
  • This paper is studied on earth network configuration when common earth is applied to electrified railway system. And the permitted capacity of buried earth cable used for configuring common earth network and application plan of existing individual earth system when common em1:h network is applied to existing electrification line improvement are studied. For this, the configuration of common earth network is examined according to the SNCF regulation, and the interface between common earth and individual earth is analysed on the basis of the existing track circuit used in electrified line.

  • PDF

A Study on the Headway of the Personal Rapid Transit System (개인고속이동(Personal Rapid Transit) 시스템의 운전시격에 대한 연구)

  • Shin Ducko;Kim Yong-Kyu;Lee Jun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.586-591
    • /
    • 2005
  • We deal with the headway which effects on the performance of the PRT(Personal Rapid Transit) system and the system safety. The headway, time between passage of one vehicle and the next, is one of the important factors to assess the line capacity, which has a cue to solve the problem of the congestion in public transportation. To decide the headway there are many important factors, especially such as the failure vehicle deceleration rate, the following simple analytical equation can be made to assess the relation between the line speed and the minimum headway. In this paper we employ a numerical analysis method using a simple analytical equations for the evaluation of the minimum headway and show simple simulation results.

Congestion and Loss Cost for the Market Participants (시장참여자별 혼잡 및 손실 비용 산정)

  • Son, Hyun-Il;Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2021-2027
    • /
    • 2011
  • Recently the power system consists of the more complicated structure, due to increase of power demands. In this circumstance, the congestion and loss capacity in transmission line is also increased. Accordingly, the investment planning of transmission system is required to reduce the congestion and loss of the transmission line. This paper proposes a method to compute the congestion and loss costs which are the key elements in economic assessment of the power system planning. And the benefit of market participants in CBP (Cost Based Pool) is computed. To demonstrate the efficient of the suggested methods, these methods are applied to peak load system of 2016 in the 4th Basic plan of Long-Them Electricity Supply and Demand.

The Buffer Allocation with Linear Resource Constraints in a Continuous Flow Line (자원제약조건을 갖는 연속흐름라인에서 Buffer 의 할당에 관한 연구)

  • Seong, Deok-Hyun;Chang, Soo-Young;Hong, Yu-Shin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.541-553
    • /
    • 1995
  • An efficient algorithm is proposed for a buffer allocation in a continuous flow line. The problem is formulated as a non-linear programming with linear constraints. The concept of pseudo gradient and gradient projection is employed in developing the algorithm. Numerical experiments show that the algorithm gives the actual optimal solutions to the problems with single linear constraint limiting the total buffer capacity. Also, even in longer production lines, it gives quite good solutions to the problems with the general linear resource constraints within a few seconds.

  • PDF

Consideration of the Distributed Generator's Capacity in Determining the Protective Devices (배전선 보호기기 선정 시 계통 연계 분산전원의 용량 고려)

  • Park, I.K.;Jang, S.I.;Park, Y.U.;Kim, S.G.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.331-333
    • /
    • 2003
  • This paper describes the effect of the interconnected wind turbine generators on fault current level of distribution networks. Distributed generator(DG) interconnected with grid can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the distribution power line with DG, the fault current level measured in a relaying point might be higher than that of distribution network without wind turbine generator due to the contribution of wind farm. Consequently, it may destroy the conventional protective devices applied in the distribution network with DG. Simulation results shows that the current level of fault happened in the power line with DG depends on the power output of DG.

  • PDF

Power System Simulation in Seoul matropolitain subway Line-6 system (서울 지하철 6호선에 대한 전력계통 시뮬레이션)

  • Lee, Tae-Shik;Moon, Young-Hyun;Sung, Soo-Young;Yoon, Kap-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.137-139
    • /
    • 1993
  • This paper details methods used to verify the adquacy of a dc traction power supply for design in Seoul matropolitain subway Line-6 system. Examples of the approach are given for a major subway presently under construction. The performance of trains operating at maximum system design capacity is modelled using a train simulation program. Using a dc network analyser program, the maximum train operating timetable, and a model of the ac and dc electrical suppy system, the electrical performance of the entire system can be modelled over a 24-hour period. The results of this analysis are used to determime: train voltage at a level sufficient to ensure train schedules: adequacy of traction transformers, rectifier, and switchgear ratings; sizes of the overhead contact systern conductors, and ac and de feeder cables: and power and energy demands at the utility company's supply points for inital and final timetable operations.

  • PDF

Solving Mixed Strategy Nash-Cournot Equilibria under Generation and Transmission Constraints in Electricity Market

  • Lee, Kwang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.675-685
    • /
    • 2013
  • Generation capacities and transmission line constraints in a competitive electricity market make it troublesome to compute Nash Equilibrium (NE) for analyzing participants' strategic generation quantities. The NE can cause a mixed strategy NE rather than a pure strategy NE resulting in a more complicated computation of NE, especially in a multiplayer game. A two-level hierarchical optimization problem is used to model competition among multiple participants. There are difficulties in using a mathematical programming approach to solve a mixed strategy NE. This paper presents heuristics applied to the mathematical programming method for dealing with the constraints on generation capacities and transmission line flows. A new formulation based on the heuristics is provided with a set of linear and nonlinear equations, and an algorithm is suggested for using the heuristics and the newly-formulated equations.

Investigation of a Hybrid HVDC System with DC Fault Ride-Through and Commutation Failure Mitigation Capability

  • Guo, Chunyi;Zhao, Chengyong;Peng, Maolan;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1367-1379
    • /
    • 2015
  • A hybrid HVDC system that is composed of line commutated converter (LCC) at the rectifier side and voltage source converter (VSC) in series with LCC at the inverter side is studied in this paper. The start-up strategy, DC fault ride-through capability, and fault recovery strategy for the hybrid HVDC system are proposed. The steady state and dynamic performances under start-up, AC fault, and DC fault scenarios are analyzed based on a bipolar hybrid HVDC system. Furthermore, the immunity of the LCC inverter in hybrid HVDC to commutation failure is investigated. The simulation results in PSCAD/EMTDC show that the hybrid HVDC system exhibits favorable steady state and dynamic performances, in particular, low susceptibility to commutation failure, excellent DC fault ride-through, and fast fault recovery capability. Results also indicate that the hybrid HVDC system can be a good alternative for large-capacity power transmission over a long distance byoverhead line.

Novel Impedance Method for Analyzing Truncal Obesity (중심성 비만 분석을 위한 새로운 임피던스 해석법)

  • Lim, Taek-Gyun;Seo, Kwang-Seok;Jeong, In-Cheol;Jun, Suk-Hwan;Noh, Yeon-Sik;Kim, Eung-Seok;Yoon, Hyung-Ro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.849-856
    • /
    • 2009
  • Truncal obesity associated with insulin resistance and metabolic syndrome increase the likelihood of hypertension, various cardiovascular diseases, hyperlipidemia and coronary heart diseases. International Diabetes Federation (IDF) experts recognized that it is necessary to develop the simple diagnostic tool which is applicable to diagnose truncal obesity worldwide, and proposed the method using a waist circumference but there is a limit to estimate subcutaneous fat distribution. However, waist line is also influenced by total fat capacity less than the intra abdominal fat. The more having severe obesity, the more correlation coefficient between waist line and intra abdominal fat is low. Therefore, this thesis defines a new abdominal impedance measurement position and impedance-index to analysis central obesity. This proposes the new model to estimate abdominal obesity using the abdominal impedance-index and CT images acquired fro 160 Korean subjects. The proposed model shows that the abdominal fat distribution has a higher correlation than waist line. (Adj R2=0.809, 0.667 and 0.687 with abdominal fat area, visceral fat area and subcutaneous fat area respectively).

MEAC Method for Analysis of Power System Stability Improving Effect Considering Run-up SPS Function of HVDC (MEAC를 적용한 HVDC Run-up SPS의 안정도향상 효과분석)

  • Lee, Jae-Gul;Song, Ji-Young;Jang, Gil-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1454-1459
    • /
    • 2017
  • In spite of continuous increase of electric power demand and new generation plants, it is very difficult to install new transmission line. Therefore, it comes to be difficult to operate the power system stable, so it is required to find another way to get new transmission capacity. Because HVDC transmission system installation is the one of the best option for us, we have undertake the HVDC project in mainland. Buckdangjin-Goduck HVDC project(500kV, 3GW) is currently under construction and Eastern Power HVDC project(500kV, 8GW) is under the study for technical specification. Both of them have the Run-up SPS function for taking action of 765kV Transmission line fault. The Run-up SPS function increases the active power output of the HVDC rapidly when the transmission line between the power plant and network is tripped, thereby preventing the generator from overspeed and improving the power system stability. In this paper, we propose MEAC(Modified Equal Area Criteria) method based on traditional EAC method to quantitatively evaluate the effect of the HVDC run-up SPS function on the power system stability improvement.