• Title/Summary/Keyword: Limiting factors

Search Result 438, Processing Time 0.033 seconds

Effect of ammonia nitrogen and microorganisms on the elevated nitrogenous biochemical oxygen demand (NBOD) levels in the Yeongsan river in Gwangju (광주지역 영산강의 NBOD 발생에 대한 암모니아성 질소 및 미생물 영향 연구)

  • Jang, Dong;Cho, Gwangwoon;Son, Gyeongrok;Kim, Haram;Kang, Yumi;Lee, Seunggi;Hwang, Soonhong;Bae, Seokjin;Kim, Yunhee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.81-95
    • /
    • 2022
  • The present study was performed to investigate the effects of NH3-N and nitrifying microorganisms on the increased BOD of downstream of the Yeongsan river in Gwangju. Water samples were collected periodically from the 13 sampling sites of rivers from April to October 2021 to monitor water qualities. In addition, the trends of nitrogenous biochemical oxygen demand (NBOD) and microbial clusters were analyzed by adding different NH3-N concentrations to the water samples. The monitoring results showed that NH3-N concentration in the Yeongsan river was 22 times increased after the inflow of discharged water from the Gwangju 1st public sewage treatment plant (G-1-PSTP). Increased NH3-N elevated NBOD levels through the nitrification process in the river, consequently, it would attribute to the increase of BOD in the Yeongsan river. Meanwhile, there was no proportional relation between NBOD and NH3-N concentrations. However, there was a significant difference in NBOD occurrence by sampling sites. Specifically, when 5 mg/L NH3-N was added, NBOD of the river sample showed 2-4 times higher values after the inflow of discharged water from G-1-PSTP. Therefore, it could be thought other factors such as microorganisms influence the elevated NBOD levels. Through next-generation sequencing analysis, nitrifying microorganisms such as Nitrosomonas, Nitroga, and Nitrospira (Genus) were detected in rivers samples, especially, the proportion of them was the highest in river samples after the inflow of discharged water from G-1-PSTP. These results indicated the effects of nitrifying microorganisms and NH3-N concentrations as important limiting factors on the increased NBOD levels in the rivers. Taken together, comprehensive strategies are needed not only to reduce the NH3-N concentration of discharged water but also to control discharged nitrifying microorganisms to effectively reduce the NBOD levels in the downstream of the Yeongsan river where discharged water from G-1-PSTP flows.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. I. Fluctuations of Temperature and Light Environment in the Multilayered Plastic House Grown Red Pepper (동계 Plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 I. 다중피복 고추육묘 시설내의 온도 및 광환경 영향)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.106-118
    • /
    • 1994
  • This study was conducted to analyze the effects of fluctuations in temperature, light intensity and soil temperature on the growth of red pepper seedlings in the nonheated plastic houses with various number of layers and in the open field. Relationship between the optimal environment and the growth of seedlings was discussed, and the maximum and minimum outdoor temperatures in Kwangju area from 1941 to 1985 were analyzed. The results obtained were as follows; 1. The minimum temperature in tunnel with quadruple coverings of P. E. film from December 20 to February 25 was decreased to 5$^{\circ}C$ mostly, where the exposure to chilling temperature could not be avoided during this period. The maximum temperature was increased to 33$^{\circ}C$ mostly and 42$^{\circ}C$ in peak, where some ventilation was needed. 2. The diurnal differences of inside temperature, increasing with number of layers, were 16 to 38$^{\circ}C$, while those of outside temperature were 5 to 1$0^{\circ}C$. 3. The cold injury in the quadruple coverings during winter occurred all the times below 12$^{\circ}C$ and as many as 200 times over 3$0^{\circ}C$, while effectiveness of thermal insulation in the multilayered nonheating plastic houses were clearly proved. 4. The inside light intensity was markedly reduced with the increment of layers and the minimum light intensity fallen down below the light compensation point for the growth of red pepper plants regardless of the number of layers. 5. Until 10 a. m., the temperature in the daytime during December 20 to mid - February showed below 10 to 12$^{\circ}C$ which was the limiting temperature for the growth of red pepper seedlings. After 4 p. m., the light intensity was sharply reduced despite of the air temperature kept over 12$^{\circ}C$. Therefore, limiting factors for the growth of red pepper seedlings were the temperature before 10 a. m. and the light intensity after 4 p. m. 6. The minimum soil temperature in quadruple coverings showed around 1$0^{\circ}C$ where the physiological damage for red pepper seedlings might be occurred. 7. The minimum outdoor temperatures from 1941 to 1985 was -19.4$^{\circ}C$, observed in the 5th January.

  • PDF

A Study on the Installation of Groyne using Critical Movement Velocity and Limiting Tractive Force (이동한계유속과 한계소류력을 활용한 수제 설치에 관한 연구)

  • Kim, Yeong Sik;Park, Shang Ho;An, Ik Tae;Choo, Yeon Moon
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.194-199
    • /
    • 2020
  • Unlike in the past, the world is facing water shortages due to climate change and difficulties in simultaneously managing the risks of flooding. The Four Major Rivers project was carried out with the aim of realizing a powerful nation of water by managing water resources and fostering the water industry, and the construction period was relatively short compared to the unprecedented scale. Therefore, the prediction and analysis of how the river environment changes after the Four Major Rivers Project is insufficient. Currently, part of the construction section of the Four Major Rivers Project is caused by repeated erosion and sedimentation due to the effects of sandification caused by large dredging and flood-time reservoirs, and the head erosion of the tributaries occurs. In order to solve these problems, the riverbed maintenance work was installed, but it resulted in erosion of both sides of the river and the development of new approaches and techniques to keep the river bed stable, such as erosion and excessive sedimentation, is required. The water agent plays a role of securing a certain depth of water for the main stream by concentrating the flow so much in the center and preventing levee erosion by controlling the flow direction and flow velocity. In addition, Groyne products provide various ecological environments by forming a natural form of riverbeds by inducing local erosion and deposition in addition to the protection functions of the river bank and embankment. Therefore, after reviewing the method of determining the shape of the Groyne structure currently in use by utilizing the mobile limit flow rate and marginal reflux force, a new Critical Movement Velocity(${\bar{U}}_d$) and a new resistance coefficient formula considering the mathematical factors applicable to the actual domestic stream were developed and the measures applicable to Groyne installation were proposed.

The Influence of Nutrients Addition on Phytoplankton Communities Between Spring and Summer Season in Gwangyang Bay, Korea (광양만에서 춘계와 하계 영양염류 첨가가 식물플랑크톤군집의 성장에 미치는 영향)

  • Bae, Si Woo;Kim, Dongseon;choi, Hyun-Woo;Kim, Young Ok;Moon, Chang Ho;Baek, Seung Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2014
  • In order to estimate the effect of nutrients addition for phytoplankton growth and community compositons in spring and summer season, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas in Gwangyang Bay, Korea. Nutrient additional experiments were also conducted to identify any additional nutrient effects on phytoplankton assemblage using the surface water for the assay. Bacillariophyceae occupied more than 90% of total phytoplankton assembleges. Of these, diatom Eucampia zodiacus and Skeletonema costatum-like species was mainly dominated in spring and summer, respectively. Here, we can offer the season why the two diatom population densities were maintained at high levels in both seasons. First, light transparency of spring season in the euphotic zone was greatly improved in the bay. This improvement is one of important factor as tigger of increase in E. zodiacus population. Second, low salinity and high nutrient sources supplied by Seomjin River discharge are a main cue for strong bottom-up effects on S. costatum-like species during the summer rainy season. Based on the algal bio-assays, although maximum growth rate of phytoplankton communities at inner bay (St.8) were similar to those of outer bay (St.20), half-saturation constant ($K_s$) for phosphate at outer bay was slightly lower than those of inner bay. This implied that adapted cells in low nutrient condition of outer bay may have enough grown even the low phosphate and they also have a competitive advantage against other algal species under low nutrient condition. In particular, efficiency of N (+) addition in summer season was higher compared to control and P added experiments. In the bay, silicon was not a major limiting factor for phytoplankton growth, whereas nitrogen (N) was considered as a limiting factor during spring and summer. Therefore, a sufficient silicate supply form water mixing Si recycled from diatom decomposition and river water is favorable form maintaining diatom ecosystems in Gwangyang Bay.

Groundwater and Soil Environment of Plastic Film House Fields around Central Part of Korea (우리나라 중부지방의 시설원예 토양 및 지하수 환경)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Jung, Yeun-Tae;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2002
  • The objective of this study was to know the qualities of soil and shallow groundwater in plastic film house fields around Central Part of Korea. The study was conducted at 11 sites in Suweon, Hwasung, Pyungtaek, Yongin and Chuncheon through May to August in 1999. Soil textures of plastic films house were mainly sandy loam or loam. Electric conductivity and organic matter content of surface soils mostly exceeded the critical levels for crop production. Average concentration of $NO_3-N$ in the sha]low groundwater was 19.1 mg/L, and it reached almost the limiting level of agricultural groundwater quality (20 mg/L). Moreover about 36% of survey sites exceeded the limiting level of agricultural groundwater quality. Sulfate concentrations also at some sites exceeded agricultural groundwater quality limit level (50 mg/L). Nitrate-N, one of the most important factors in the groundwater quality, had positive correlations with other ions in foundwater.

Suitability Grouping System of Paddy Soils for Multiple Cropping -Part II : Criteria of the Suitability Grouping (다모작(多毛作)을 위한 답토양(畓土壤) 적성등급(適性等級) 구분(區分) -제(第)2보(報) : 적성등급(適性等級) 구분기준(區分基準))

  • Jung, Yeun-Tae;Park, Eun-Ho;No, Yeong-Pal;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.283-289
    • /
    • 1986
  • To establish a suitability grouping system of paddy soils for multiple cropping of rice with other upland crops, the study was carried out after a few basic experiments. In succession to the results on basic experiment prior, the suitability system proposed and the results of application mentioned in this report were summarized as follows; 1. The factors of soil properties in the system were productivities represented by soil texture and drainage class, as well as salinity of surface and sub-soil pH of chemical properties were considered together with slope, warmth index, ground water table, parent materials etc. of soil physical or environmental conditions. The weights of the factors were combined with multiplicatively and additively so as the total marks of ideal soil to be 100. The system was composed with 5 suitability classes; over 91 mark is class I, under 60 mark class V, and each 10 point interval between classes. The limiting factors "P" (in the case that Physical properties or Productivity marks under 24), "S" (Surface slope less than 15) and "C" (Chemical condition below 15) etc. were appended up to two kinds to the classes except a part of soils in class I. 2. The areas where the warmth index exceed 110 in Yeongnam were 19% for class I, 22.7% for class II, 44.7% for class III, 11.5% for class IV, and 2.1% for class V. The rates in class I and II were slightly more than those of the whole country. 3. The points of each soil gained by the system had a positive correlation ($r=.922^{**}$) with the potential productivities.

  • PDF

Development of a water quality prediction model for mineral springs in the metropolitan area using machine learning (머신러닝을 활용한 수도권 약수터 수질 예측 모델 개발)

  • Yeong-Woo Lim;Ji-Yeon Eom;Kee-Young Kwahk
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.307-325
    • /
    • 2023
  • Due to the prolonged COVID-19 pandemic, the frequency of people who are tired of living indoors visiting nearby mountains and national parks to relieve depression and lethargy has exploded. There is a place where thousands of people who came out of nature stop walking and breathe and rest, that is the mineral spring. Even in mountains or national parks, there are about 600 mineral springs that can be found occasionally in neighboring parks or trails in the metropolitan area. However, due to irregular and manual water quality tests, people drink mineral water without knowing the test results in real time. Therefore, in this study, we intend to develop a model that can predict the quality of the spring water in real time by exploring the factors affecting the quality of the spring water and collecting data scattered in various places. After limiting the regions to Seoul and Gyeonggi-do due to the limitations of data collection, we obtained data on water quality tests from 2015 to 2020 for about 300 mineral springs in 18 cities where data management is well performed. A total of 10 factors were finally selected after two rounds of review among various factors that are considered to affect the suitability of the mineral spring water quality. Using AutoML, an automated machine learning technology that has recently been attracting attention, we derived the top 5 models based on prediction performance among about 20 machine learning methods. Among them, the catboost model has the highest performance with a prediction classification accuracy of 75.26%. In addition, as a result of examining the absolute influence of the variables used in the analysis through the SHAP method on the prediction, the most important factor was whether or not a water quality test was judged nonconforming in the previous water quality test. It was confirmed that the temperature on the day of the inspection and the altitude of the mineral spring had an influence on whether the water quality was unsuitable.

Mobility of Carbon Nanomaterials in Soil Media (토양 매질체에서 탄소나노물질의 이동성)

  • Yi, In-Geol;Kang, Jin-Kyu;Kim, Song-Bae;Kim, Hyunjung;Han, Yosep;Eom, Ig-Chun;Jo, Eunhye;Park, Sun-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.588-595
    • /
    • 2014
  • Carbon nanomaterials such as fullerene, carbon nanotube and graphene are representative nanomaterials and widely used in various fields. Carbon nanomaterials can be exposed to environments during their production, usage and disposal, spreading to different systems and posing a great threat to various ecological receptors. Researches are conducted in order to determine the possibility of groundwater exposure to carbon nanomaterials due to their release and passage through soils. If soils can play a significant role in limiting the transport of carbon nanomaterials, the possibility of groundwater exposure to carbon nanomaterials can be reduced greatly. This review paper presented the research works performed for the mobility of carbon nanomaterials in soil media. Also, the paper provided the factors affecting the transport of carbon nanomaterials in soil media along with the DLVO theory/colloid filtration theory/transport model, which are used to describe the transport of carbon nanomaterials in soil media. Recently, production of carbon nanomaterials and their commercial and environmental applications increase rapidly in Korea. Therefore, researches regarding the fate and transport of domestic carbon nanomaterials in soil environments should be performed in various environmental conditions.

A case of Tocolytics Induced Pulmonary Edema (Tocolytics에 의해 유발된 폐부종 1예)

  • Lee, Dae Jun;Kim, Chang In;Jee, Young Goo;Lee, Kye Young;Kim, Keun Yeol;Choi, Young Hi;Seo, Pil Weon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.1
    • /
    • pp.183-190
    • /
    • 1997
  • Tocolytics are agents widely used in the treatment of premature labor to inhibit uterine contractions. Ritodrine is most commonly used tocolytic agent and acts by increasing intracellular cyclic adenosine monophosphate, which decreases the activity of myosin light-chain kinase, the rate-limiting enzyme in the signal network leading to contraction. Physiologic effects associated with the use of ritodrine are due to their effect on bera-l as well as beta-2 receptors. Some of maternal complications of therapy are rachycardia, hyperglycemia, hypokalemia, lactic acidosis, myocardial ischemia, and pulmonary edema. Tocolytics induced pulmonary edema is a serious complication that can lead to marternal death, although infrequent, The incidence varies from 0.5% to 5% of those receiving these agents. Predisposing factors include the concommitant use of corticosteroid, twin gestation, fluid overload (particularly with saline), and anemia. Several mechanisms have been postulated, but the pathogenesis is uncertain. It is suggested that both types of mechanism, hydrostatic and permeability induced, might be involved. The association of tocolytic therapy with pulmonary edema appears to be unique to the pregnant state, because this complication has never been reported in asthmatic patients exposed to high dosages. We report a case of tocolytic induced pulmonary edema developed in 24 hours after delivery.

  • PDF