DOI QR코드

DOI QR Code

Mobility of Carbon Nanomaterials in Soil Media

토양 매질체에서 탄소나노물질의 이동성

  • Yi, In-Geol (Department of Rural Systems Engineering, Seoul National University) ;
  • Kang, Jin-Kyu (Department of Rural Systems Engineering, Seoul National University) ;
  • Kim, Song-Bae (Department of Rural Systems Engineering, Seoul National University) ;
  • Kim, Hyunjung (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Han, Yosep (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Eom, Ig-Chun (Division of Risk Assessment, National Institute of Environmental Research) ;
  • Jo, Eunhye (Division of Risk Assessment, National Institute of Environmental Research) ;
  • Park, Sun-Young (Division of Risk Assessment, National Institute of Environmental Research)
  • 이인걸 (서울대학교 지역시스템공학과) ;
  • 강진규 (서울대학교 지역시스템공학과) ;
  • 김성배 (서울대학교 지역시스템공학과) ;
  • 김현중 (전북대학교 자원에너지공학과) ;
  • 한요셉 (전북대학교 자원에너지공학과) ;
  • 엄익춘 (국립환경과학원 위해성평가연구과) ;
  • 조은혜 (국립환경과학원 위해성평가연구과) ;
  • 박선영 (국립환경과학원 위해성평가연구과)
  • Received : 2014.07.08
  • Accepted : 2014.08.29
  • Published : 2014.08.31

Abstract

Carbon nanomaterials such as fullerene, carbon nanotube and graphene are representative nanomaterials and widely used in various fields. Carbon nanomaterials can be exposed to environments during their production, usage and disposal, spreading to different systems and posing a great threat to various ecological receptors. Researches are conducted in order to determine the possibility of groundwater exposure to carbon nanomaterials due to their release and passage through soils. If soils can play a significant role in limiting the transport of carbon nanomaterials, the possibility of groundwater exposure to carbon nanomaterials can be reduced greatly. This review paper presented the research works performed for the mobility of carbon nanomaterials in soil media. Also, the paper provided the factors affecting the transport of carbon nanomaterials in soil media along with the DLVO theory/colloid filtration theory/transport model, which are used to describe the transport of carbon nanomaterials in soil media. Recently, production of carbon nanomaterials and their commercial and environmental applications increase rapidly in Korea. Therefore, researches regarding the fate and transport of domestic carbon nanomaterials in soil environments should be performed in various environmental conditions.

탄소나노물질은 대표적인 나노물질로써, 풀러렌, 탄소나노튜브, 그래핀 등을 포함한다. 탄소나노물질은 다양한 분야에서 널리 이용되고 있는데, 생산, 사용, 처리 등의 단계에서 환경에 노출될 수 있고, 일단 노출이 되면 다양한 계로 확산되어 여러 생태학적 수용체에 큰 위협이 될 수 있다. 탄소나노물질이 토양환경에 노출되었을 때, 물의 흐름을 따라 토양을 통과하여 지하수에 노출될 가능성 여부를 판단하기 위하여 연구들이 진행되고 있다. 토양이 탄소나노물질의 이동을 제한하는 역할을 잘하는 것으로 판단될 경우에는, 탄소나노물질의 지하수 노출 가능성이 상당히 낮아질 것이다. 본 논문에서는 최근까지 토양 매질체에서 탄소나노물질의 이동과 관련하여 수행된 연구들을 정리하였다. 또한, 이러한 연구들을 통해 알려진 탄소나노물질의 이동에 영향을 미치는 인자들을 제시하였다. 그리고, 탄소나노물질의 이동을 모사하는데 이용되는 DLVO이론, 콜로이드 여과이론 그리고 이동모델을 제시하였다. 최근, 국내에서도 탄소나노물질의 생산과 상업적, 환경적 이용이 급속히 증가하고 있다. 따라서, 국내에서 생산되고 유통되는 탄소나노물질의 토양환경에서 이동에 관한 연구들이 향후에도 다양한 토양 환경조건에서 수행되어야 할 것으로 보인다.

Keywords

References

  1. Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J. and Lead, J. R., "Nanomaterials in the environment: behavior, fate, bioavailability, and effects," Environ. Toxicol. Chem., 27, 1825-1851(2008). https://doi.org/10.1897/08-090.1
  2. Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J. and Warheit, D. B., "Safe handling of nanotechnology," Nature, 444, 267-269(2006). https://doi.org/10.1038/444267a
  3. Murayama, H., Tomonoh, S., Alford, J. M. and Karpk, M. E., "Fullerene production in tons and more: from science to industry," Fullerene. Nanotube. Carbon Nanostruc., 12, 1-9 (2004).
  4. Hebard, A. F., Rosseinsky, M. J., Haddon, R. C., Murphy, D. W., Glarum, S. H., Plastra, T. T. M., Ramirez, A. P. and Kortan, A. R., "Superconductivity at 18 K in potassiumdoped C60," Nature, 350, 600-601(1991). https://doi.org/10.1038/350600a0
  5. Isaacson, C. W. and Bouchard, D. C., "Effects of humic acid and sunlight on the generation and aggregation state of aqu/$C_{60}$ nanoparticles," Environ. Sci. Technol., 44, 8971-8976(2010). https://doi.org/10.1021/es103029k
  6. Volder, M. F. L. D., Tawfick, S. H., Baughman, R. H. and Hart, A. J., "Carbon nanotubes: present and future commercial applications," Science, 339, 535-539(2013). https://doi.org/10.1126/science.1222453
  7. Allen, M. J., Tung, V. C. and Kaner, R. B., "Honeycomb carbon: a review of graphene," Chem. Rev., 110, 132-145 (2010). https://doi.org/10.1021/cr900070d
  8. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R. and Ruoff, R. S., "Graphene and Graphene oxide: synthesis, properties, and applications," Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  9. Dressehaus, M. S. and Dresselhaus, G., "Fullerenes and fullerene derived solids as electronic materials," Annu. Rev. Mater. Sci., 25, 487-523(1995). https://doi.org/10.1146/annurev.ms.25.080195.002415
  10. Zhang, L. L., Zhou, R. and Zhao, X. S., "Graphene-based materials as supercapacitor electrodes," J. Mater. Chem., 20, 5983-5992(2010). https://doi.org/10.1039/c000417k
  11. Gressler, S., Fries, R. and Simko, M., "Carbon nanotubespart 1: introduction, production, areas of application," Nano-Trust-Dossier, 22, 1-5(2012).
  12. Sreeprasad, T. S. and Pradeep, T., "Graphene for environmental and biological applications," Int. J. Mod. Phys. B, 26, 1242001-1-1242001-26(2012). https://doi.org/10.1142/S0217979212420015
  13. Mueller, N. C. and Nowack, B., "Exposure modeling of engineered nanoparticles in the environment," Environ. Sci. Technol., 42, 4447-4453(2008). https://doi.org/10.1021/es7029637
  14. Nowack, B., "Occurrence, behavior and effects of nanoparticles in the environment," Environ. Pollut., 150, 5-22(2007). https://doi.org/10.1016/j.envpol.2007.06.006
  15. Farre, M., Gajda-Schrantz, K., Kantiani, L. and Barcelo, D., "Ecotoxicity and analysis of nanomaterials in the aquatic environment," Anal. Bioanal. Chem., 393, 81-95(2009). https://doi.org/10.1007/s00216-008-2458-1
  16. Wiesner, M. R., Lowry, G. V., Jones, K. L., Hochella, M. F. JR., Di Giulio, R. T., Casman, E., Bernhardt, E. S., "Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials," Environ. Sci. Technol., 43, 6458-6462(2009). https://doi.org/10.1021/es803621k
  17. Petersen, E. J., Zhang, L., Mattison, N. T., O'Carroll, D. M., Whelton, A. J., Uddin, N., Nguyen, T., Huang, Q., Henry, T. B., Holbrook, R. D. and Chen, K. L., "Potential release pathways, environmental fate, and ecological risks of carbon nanotubes," Environ. Sci. Technol., 45, 9837-9856(2011). https://doi.org/10.1021/es201579y
  18. Gottschalk, F., Sonderer, T., Scholz, R. W. and Nowack, B., "Modeled environmental concentrations of engineered nanomaterials ($TiO_2$, ZnO, Ag, CNT, Fullerenes) for different regions," Environ. Sci. Technol., 43, 9216-9222(2009). https://doi.org/10.1021/es9015553
  19. Gottschalk, F., Sonderer, T., Scholz, R. W. and Nowack, B., "Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis," Environ. Toxicol. Chem., 29, 1036-1048(2010).
  20. Yamago, S., Tokuyama, H., Nakamura, E., Kikuchi, K., Kananishi, S., Sueki, K., Nakahara, H., Enomoto, S. and Ambe, F., "In vivo biological behaviour of a water-miscible fullerene: 14C labelling, adsorption, distribution, excretion and acute toxicity," Chem. Biol., 2, 385-389(1995). https://doi.org/10.1016/1074-5521(95)90219-8
  21. Folkmann, J. K., Risom, L., Jacobsen, N. R., Wallin, H., Loft, S. and Moller, P., "Oxidatively damaged DNA rats exposed by oral gavage to $C_{60}$ fullerenes and single-walled carbon nanotubes," Environ. Health Perspect., 117, 703-708 (2009). https://doi.org/10.1289/ehp.11922
  22. Ghafari, P., St-Denis, C. H., Power, M. E., Jin, X., Tsou, V., Mandal, H. S., Bols, N. C. and Tang, X. W., "Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa," Nature Nanotechnol., 3, 347-351(2008). https://doi.org/10.1038/nnano.2008.109
  23. Petersen, E. J., Akkanen, J., Kukkonen, J. V. K. and Weber Jr, W. J., "Biological uptake and depuration of carbon nanotubes by daphnia magna," Environ. Sci. Technol., 43, 2969- 2975(2009). https://doi.org/10.1021/es8029363
  24. Liu, L., Gao, B., Wu, L., Morales, V. L., Yang, L., Zhou, Z. and Wang, H., "Deposition and transport of graphene oxide in saturated and unsaturated porous media," Chem. Eng. J., 229, 444-449(2013). https://doi.org/10.1016/j.cej.2013.06.030
  25. Liu, L., Gao, B., Wu, L., Yang, L., Zhou, Z. and Wang, H., "Effects of pH and surface metal oxyhydroxides on deposition and transport of carboxyl-functionalized graphene in saturated porous media," J. Nanopart. Res., 15, 1-8(2013).
  26. Khan, I. A., Berge, N. D., Sabo-Attwood, T., Ferguson, P. L. and Saleh, N. B., "Single-walled carbon nanotube transport in representative municipal solid waste landfill conditions," Environ. Sci. Technol., 47, 8425-8433(2013).
  27. Mekonen, A., Sharma, P. and Fagerlund, F., "Transport and mobilization of multiwall carbon nanotubes in quartz sand under varying saturation," Environ. Earth Sci., 71, 3751-3760(2013).
  28. Kasel, D., Bradford, S. A., Simunek, J., Heggen, M., Vereecken, H. and Klumpp, E., "Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size," Water Res., 47, 933-944(2013). https://doi.org/10.1016/j.watres.2012.11.019
  29. Kasel, D., Bradford, S. A., Simunek, J., Putz, T., Vereecken, H. and Klumpp E., "Limited transport of functionalized multiwalled carbon nanotubes in two natural soils," Environ. Pollut., 180, 152-158(2013). https://doi.org/10.1016/j.envpol.2013.05.031
  30. Lanphere, J. D., Luth, C. J. and Walker, S. L., "Effects of solution chemistry on the transport of graphene oxide in saturated porous media," Environ. Sci. Technol., 47, 4255-4261(2013). https://doi.org/10.1021/es400138c
  31. Chowdhury, I., Duch, M. C., Gits, C. C., Hersam, M. C. and Walker, S. L., "Impact of synthesis methods on the transport of single walled carbon nanotubes in the aquatic environment," Environ. Sci. Technol., 46, 11752-11760(2012). https://doi.org/10.1021/es302453k
  32. Fortner, J. D., Solenthaler, C., Hughes, J. B., Puzrin, A. M. and Plotze, M., "Interactions of clay minerals and a layered double hydroxide with water stable, nano scale fullerene aggregates ($nC_{60}$)," Appl. Clay Sci., 55, 36-43(2012). https://doi.org/10.1016/j.clay.2011.09.014
  33. Wang, Y., Kim, J., Baek, J., Miller, G. W. and Pennell, K. D., "Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length," Water Res., 46, 4521-4531(2012). https://doi.org/10.1016/j.watres.2012.05.036
  34. Wang, Y., Li, Y., Costanza, J., Abriola, L. M. and Pennell, K. D., "Enhanced mobility of fullerene ($C_{60}$) nanoparticles in the presence of stabilizing agents," Environ. Sci. Technol., 46, 11761-11769(2012). https://doi.org/10.1021/es302541g
  35. Tian, Y., Gao, B., Wu, L., Carpena, R. M. and Huang, Q., "Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media," J. Hazard. Mater., 231-232, 79-87(2012). https://doi.org/10.1016/j.jhazmat.2012.06.039
  36. Tian, Y., Gao, B., Wang, Y., Morales, V. L., Carpena, R. M., Huang, Q. and Yang, L., "Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns," J. Hazard. Mater., 213-214, 265-272(2012). https://doi.org/10.1016/j.jhazmat.2012.01.088
  37. Tian, Y., Gao, B., Morales, V. L., Wang, Y. and Wu, L., "Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media," J. Hazard. Mater., 239-240, 333-339(2012). https://doi.org/10.1016/j.jhazmat.2012.09.003
  38. Chen, L., Sabatini, D. A. and Kibbey, T. C. G., "Transport and retention of fullerene ($nC_{60}$) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating," J. Contam. Hydrol., 138-139, 104-112(2012). https://doi.org/10.1016/j.jconhyd.2012.06.009
  39. Zhang, L., Hou, L., Wang, L., Kan, A. T., Chen, W. and Tomson, M. B., "Transport of fullerene nanoparticles ($nC_{60}$) in saturated sand and sandy soil: controlling factors and modeling," Environ. Sci. Technol., 46, 7230-7238(2012). https://doi.org/10.1021/es301234m
  40. Zhang, W., Isaacson, C. W., Rattanaudompol, U. S., Powell, T. B. and Bouchard, D., "Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media," Water Res., 46, 2992-3004(2012). https://doi.org/10.1016/j.watres.2012.02.049
  41. Bouchard, D., Zhang, W., Powell, T. and Rattanaudompol, U. S., "Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations," Environ. Sci. Technol., 46, 4458-4465(2012). https://doi.org/10.1021/es204618v
  42. Feriancikova, L. and Xu, S., "Deposition and remobilization of graphene oxide within saturated sand packs," J. Hazard. Mater., 235-236, 194-200(2012). https://doi.org/10.1016/j.jhazmat.2012.07.041
  43. Tian, Y., Gao, B. and Ziegler, K. J., "High mobility of SDBSdispersed single-walled carbon nanotubes in saturated and unsaturated porous media," J. Hazard. Mater., 186, 1766- 1772(2011). https://doi.org/10.1016/j.jhazmat.2010.12.072
  44. Mattison, N. T., O'Carroll, D. M., Rowe, R. K. and Petersen, E. J., "Impact of porous media grain size on the transport of multi-walled carbon nanotubes," Environ. Sci. Technol., 45, 9765-9775(2011). https://doi.org/10.1021/es2017076
  45. Zhang, L., Wang, L., Zhang, P., Kan, A. T., Chen, W. and Tomson, M. B., "Facilitated transport of 2,2', 5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sand soil columns," Environ. Sci. Technol., 45, 1341-1348(2011). https://doi.org/10.1021/es102316m
  46. Wang, Y., Li, Y. and Kim, H., Walker, S. L., Abriola, L. M. and Pennell, K. D., "Transport and retention of fullerene nanoparticles in natural soils," J. Environ. Qual., 39, 1925-1933(2010). https://doi.org/10.2134/jeq2009.0411
  47. Tian, Y., Gao, B., Silvera-Batista, C. and Ziegler, K. J., "Transport of engineered nanoparticles in saturated porous media," J. Nanopart. Res., 12, 2371-2380(2010). https://doi.org/10.1007/s11051-010-9912-7
  48. Tong, M., Ding, J., Shen, Y. and Zhu, P., "Influence of biofilm on the transport of fullerene ($C_{60}$) nanoparticles in porous media," Water Res., 44, 1094-1103(2010). https://doi.org/10.1016/j.watres.2009.09.040
  49. Chae, S., Badlreddy, A. R., Budarz, J. F., Lin, S., Xiao, Y., Therezlen, M. and Wiesner, M. R., "Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport," ACS Nano, 4, 5011-5018(2010). https://doi.org/10.1021/nn100620d
  50. Liu, X., O'Carroll, D. M., Petersen, E. J., Huang, Q. and Anderson, C. L., "Mobility of multiwalled carbon nanotubes in porous media," Environ. Sci. Technol., 43, 8153-8158 (2009). https://doi.org/10.1021/es901340d
  51. Jaisi, D. P. and Elimelech, M., "Single-walled carbon nanotubes exhibit limited transport in soil columns," Environ. Sci. Technol., 43, 9161-9166(2009). https://doi.org/10.1021/es901927y
  52. Jaisi, D. P., Saleh, N. B., Blake, R. E. and Elimelech, M., "Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility," Environ. Sci. Technol., 42, 8317-8323(2008). https://doi.org/10.1021/es801641v
  53. Li, Y., Wang, Y., Pennell, K. D. and Abriola, L. M., "Investigation of the transport and deposition of fullerene ($C_{60}$) nanoparticles in quartz sand under varying flow conditions," Environ. Sci. Technol., 42, 7174-7180(2008). https://doi.org/10.1021/es801305y
  54. Wang, Y., Li, Y. and Pennell, K. D., "Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands," Environ. Toxicol. Chem., 27, 1860-1867(2008). https://doi.org/10.1897/08-039.1
  55. Wang, Y., Li, Y., Fortner, J. D., Abriola, L. M. and Pennell, K. D., "Transport and retention of nanoscale $C_{60}$ aggregates in water-saturated porous media," Environ. Sci. Technol., 42, 3588-3594(2008). https://doi.org/10.1021/es800128m
  56. Wang, P., Shi, Q., Liang, H., Steuerman, D. W., Stucky, G. D. and Keller, A. A., "Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution," Small, 4, 2166-2170(2008). https://doi.org/10.1002/smll.200800753
  57. Espinasse, B., Hotze, E. M. and Wiesner, M. R., "Transport and retention of colloidal aggregates of $C_{60}$ in porous media: effects of organic macromolecules, ionic composition, and preparation method," Environ. Sci. Technol., 41, 7396-7402 (2007). https://doi.org/10.1021/es0708767
  58. Cheng, X., Kan, A. T. and Tomson, M. B., "Study of $C_{60}$ transport in porous media and the effect of sorbed $C_{60}$ on naphthalene transport," J. Mater. Res., 20, 3244-3254(2005). https://doi.org/10.1557/jmr.2005.0402
  59. Brant, J., Lecoanet, H. and Wiesner, M. R., "Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems," J. Nanopart. Res., 7, 545-553(2005). https://doi.org/10.1007/s11051-005-4884-8
  60. Lecoanet, H. F., Bottero, J. Y. and Wiesner, M. R., "Laboratory assessment of the mobility of nanomaterials in porous media," Environ. Sci. Technol., 38, 5164-5169(2004). https://doi.org/10.1021/es0352303
  61. Lecoanet, H. F. and Wiesner, M. R., "Velocity effects on fullerene and oxide nanoparticle deposition in porous media," Environ. Sci. Technol., 38, 4377-4382(2004). https://doi.org/10.1021/es035354f
  62. Tufenkji, N. and Elimelech, M., "Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media," Environ. Sci. Technol., 38, 529-536(2004). https://doi.org/10.1021/es034049r