• Title/Summary/Keyword: Limited of stability

Search Result 783, Processing Time 0.026 seconds

A study on the incent ive satisfaction in family restaurant employer (패밀리레스토랑 종사원의 인센티브 만족도에 관한 연구)

  • 변광인;한경수;양태석
    • Culinary science and hospitality research
    • /
    • v.8 no.1
    • /
    • pp.71-94
    • /
    • 2002
  • The food service industry has grown up without an affection of economic collapse, and its kinds are being diversified and focused on many different aspects from physical taste to many other elements such as atmosphere, service quality, sanitation and etc.. Now it appeals to even familiarity. These Facts are well ref looted to Family Restaurant which has not been very popular so far, but now it takes its space in the market, and its management system is being introduced to other countries. The purpose of this study is to see how to satisfy them to make maximum business profit, and one possibility is "incentive". To accomplish research, theoretical and practical studies have been done and surveys have taken placed for substantial studies. The subjects were limited to employees in Family Restaurant in Seoul from February 20th to March 20th, 2001. Data, reliableness, and propriety were analyzed by SAS(Statistical Analyzed System). Sampling mode was randomness, and validation mode was limited to 223 papers. The followings are the results of this analysis First, Satisfaction of incentive were made by stability, impartiality and suitability regardless difference on companies, ages, departments, and authority of an employees. Second, Satisfaction on incentive for employees in Family Restaurants were not well received. Although these necessary demand, there is not yet incentive system operation to most of business. Especially, it is not even studied on Family Restaurants. This study should have been studied on more customers and spotted employees to be objective. It is strongly recommended to do this study without limitation and further studies is considered on this subjects.

  • PDF

Mechanical Properties and Thermal Stability of Waste PVC/HDPE Blend Prepared by Twin-screw Extruder

  • Lee, Rami;Park, Se-Ho;Baek, Jong-sung;Kye, Hyoungsan;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Recycling of waste polyvinyl chloride plastics has attracted much attention due to environmental problems, but the poor mechanical properties, low thermal stability, frequent breakage of strands, and melt cracking of the waste plastics have limited their widespread use. To overcome these disadvantages of waste PVC (W-PVC), recycled PVC powder blend was prepared by adding high-density polyethylene (HDPE) and ethylene vinyl acetate (EVA) as a heat stabilizer and compatibilizer, respectively. An intermeshing co-rotating twin screw extruder was used to prepare the blend, and the characteristics of the blend were analyzed by SEM and TGA, and by using a UTM and Izod impact tester. The impact strength was improved as the EVA content increased for the W-PVC/HDPE (80/20 wt%) blend. As the HDPE and EVA contents increased in the W-PVC/HDPE/EVA blend, the impact strength increased. SEM observations also revealed the improved interfacial adhesion for the EVA-containing blend.

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

Effect of Acetylated Rice Starch on Rheological Properties of Surimi Sol and Gel

  • Jung, Young-Hwa;Kim, Won-Woo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.817-821
    • /
    • 2007
  • The effect of acetylated rice (AR) starch at different concentrations (0, 4, 6, and 8%) on rheological properties of surimi sols and gels was studied. Dynamic frequency sweeps of surimi-AR starch sols at $10^{\circ}C$ showed that the magnitudes of storage moduli (G') decreased with an increase in starch concentration while those of tan ${\delta}$ increased, indicating that the effect of AR starch on the viscoelastic properties of surimi sols depended on starch concentration. In general, the G' thermograms of surimi sols showed the similar sol-gel transition pattern and they were also influenced by the addition of AR starch. The presence of AR starch in the surimi gel system reduced the gel strength and expressible moisture content (EMC). Surimi-AR starch gels showed better freeze-thaw stability compared to the control (0% starch concentration). The effect of AR starch on the rheological properties of surimi sols and gels appeared to be related to the swelling ability of starch granules in the presence of limited water available for starch.

Properties of Acylated Mungbean Whole Globulin (Acyl화에 의한 녹두 Whole Globulin의 특성에 관한 연구)

  • Kim, Yong-Hwan;Song, Jong-Seon;Kim, Gwang-Su
    • The Korean Journal of Food And Nutrition
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 1989
  • The objective of this study was to improved the limited functional characteristics of mungbean whole globulin. The mungbean whole globulin was acylated with succinic and acetic anhydride, and the functional properties of acylated protein were investigated, The results obtained ware as follows. 1. The UV-absorption spectra of acylated whole globulins with that of the succinylated 74% whole globulin as large blue shift of the absorption maximum and minimum wavelength from 275 nm to 269 nm, respectively. 2. The mobility of acylated whole globulin were increased on PAGE pattern, and degree of mobility was particularly remarkable in case of succinylation, 3. The water absorption capacity of whole globulin was increased by acylation. The most increased rate of whole globulin was 174,02% from succinylated 74%. The oil absorption capacity of whole globulin was increased by acylation The most increased rate of whole globulin was 165.41% from acetylated 81.77%. 4. The bulk density of whole globulin was decreased by acylation. and the greater the extent of acylation, the smaller the bulk density. 5. The foaming capacity and stability of whole globulin was increased by acylation, and remarkably high in 74% succinylated whole globulin. In contrast, however, the foaming capacity and stability of native and acylated whole globulin were decreased by heat treatment.

  • PDF

Effect of NaCl, Gum Arabic and Microbial Transglutaminase on the Gel and Emulsion Characteristics of Porcine Myofibrillar Proteins

  • Davaatseren, Munkhtugs;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.808-814
    • /
    • 2014
  • This study investigated the effect of gum arabic (GA) combined with microbial transglutaminase (TG) on the functional properties of porcine myofibrillar protein (MP). As an indicator of functional property, heat-set gel and emulsion characteristics of MP treated with GA and/or TG were explored under varying NaCl concentrations (0.1-0.6 M). The GA improved thermal gelling ability of MP during thermal processing and after cooling, and concomitantly added TG assisted the formation of viscoelastic MP gel formation. Meanwhile, the addition of GA decreased cooking yield of MP gel at 0.6 M NaCl concentration, and the yield was further decreased by TG addition, mainly attributed by enhancement of protein-protein interactions. Emulsion characteristics indicated that GA had emulsifying ability and the addition of GA increased the emulsification activity index (EAI) of MP-stabilized emulsion. However, GA showed a negative effect on emulsion stability, particularly great drop in the emulsion stability index (ESI) was found in GA treatment at 0.6 M NaCl. Consequently, the results indicated that GA had a potential advantage to form a viscoelastic MP gel. For the practical aspect, the application of GA in meat processing had to be limited to the purposes of texture enhancer such as restructured products, but not low-salt products and emulsion-type meat products.

The Biostability and Cancer Effect of PLGA Nanoparticles with Different Charges (전하가 다른 PLGA 나노 입자의 생체 안정성 및 암세포에 미치는 영향)

  • Kim, Inwoo;Park, Seungbin;Ji, Yuhyun;Park, Sanghyo;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.140-145
    • /
    • 2018
  • Cancer is a major burden of human disease worldwide. Current chemotherapy has severe side effects because the drugs affect whole body nonspecifically. In addition, the drugs to reach cancer cells are very limited. Over the last two decades, Drug Delivery System (DDS) using nanoparticles has suggested promising results to improve current limitations. In this study, we prepared PLGA nanoparticles with different charge properties and observed their stability and internalization effect to cancer cells. Results using Dynamic Light Scattering (DLS) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the size and chemical composition of the nanoparticles. The stability of the nanoparticles in pH buffers were variable depending on charge properties. The nanoparticles showed different cytotoxicity and internalization effects to MCF-7 human breast cancer cells. In conclusion, we demonstrated the importance of delicately engineered nanoparticles for better DDS in cancer.

Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process

  • Jana, Jayasmita;Ngo, Yen-Linh Thi;Chung, Jin Suk;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.220-237
    • /
    • 2020
  • Modern electrochemical energy devices involve generation and reduction of fuel gases through electrochemical reactions of water splitting, alcohol oxidation, oxygen reduction, etc. Initially, these processes were executed in the presence of noble metal-based catalyst that showed low overpotential and high current density. However, its high cost, unavailability, corrosion and related toxicity limited its application. The search for alternative with high stability, durability, and efficiency led scientists towards carbon nanoparticles supported catalysts which has high surface area, good electrical conductivity, tunable morphology, low cost, ease of synthesis and stability. Carbon nanoparticles are classified into two groups based on morphology, one and zero dimensional particles. Carbon nanoparticles at zero dimension, denoted as carbon dots, are less used carbon support compared to other forms. However, recently carbon dots with improved electronic properties have become popular as catalyst as well as catalyst support. This review focused on the recent advances in electrocatalytic activities of carbon dots. The mechanisms of common electrocatalytic reactions and the role of the catalysts are also discussed. The review also proposed future developments and other research directions to overcome current limitations.

Application of sweet and taste modifying genes for development in plants: current status and prospects

  • Akter, Shahina;Huq, Md. Amdadul;Jung, Yu-Jin;Cho, Yong-Gu;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.397-404
    • /
    • 2016
  • Sweet and taste modifying proteins are natural alternatives to synthetic sweeteners and flavor enhancers, and have been used for centuries in different countries. Use of these proteins is limited due to less stability and availability. However, recent advances in biotechnology have enhanced their availability. These include production of sweet and taste modifying proteins in transgenic organisms, and protein engineering to improve their stability. Their increased availability in the food, beverage or medicinal industries as sweeteners and flavor enhancers will reduce the dependence on artificial alternatives. Production of transgenic plants using sweet and taste modifying genes, is an interesting alternative to the extraction of these products from natural source. In this review paper, we briefly describe various sweet and taste modifying proteins (such as thaumatin, monellin, brazzein, curculin and miraculin), their properties, and their application for plant development using biotechnological approaches.

A Study on the Rotating Ring Using Air Bearing in Yarn Manufacturing Process (방적공정에 있어서 공기 베어링을 이용한 회전링에 관한 연구)

  • Jang, Seung-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.622-630
    • /
    • 2010
  • The increase of the spindle speed to enhance the productivity in ring spinning processes has been limited by yarn tension and heat generation of the traveller/ring. The main causes of yarn tension are 1) the force added directly to the yarn by the rotation of the spindle and 2) the centrifugal force exerted by the yarn balloon generated by traveller rotation. The dominant causes of heat generation are 1) the friction between the ring and traveller and 2) the friction between the traveller and yarn. These factors cause yarn end-breaks and heat damage. In the case of the staple yarn manufacturing process for PET (polyester) and nylon (a heat plasticity material), the rotational speed of the ring spinning system has deteriorated to 10,000rpm. The objective of this study was to develop a rotating ring which has dynamic stability, high productivity and a simple structure to overcome the limitations of the conventional fixed ring/traveller system. The results of this study revealed that the spinning tension could be reduced by 67.8% using the newly developed rotating ring.