DOI QR코드

DOI QR Code

Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process

  • Received : 2020.04.10
  • Accepted : 2020.04.23
  • Published : 2020.08.31

Abstract

Modern electrochemical energy devices involve generation and reduction of fuel gases through electrochemical reactions of water splitting, alcohol oxidation, oxygen reduction, etc. Initially, these processes were executed in the presence of noble metal-based catalyst that showed low overpotential and high current density. However, its high cost, unavailability, corrosion and related toxicity limited its application. The search for alternative with high stability, durability, and efficiency led scientists towards carbon nanoparticles supported catalysts which has high surface area, good electrical conductivity, tunable morphology, low cost, ease of synthesis and stability. Carbon nanoparticles are classified into two groups based on morphology, one and zero dimensional particles. Carbon nanoparticles at zero dimension, denoted as carbon dots, are less used carbon support compared to other forms. However, recently carbon dots with improved electronic properties have become popular as catalyst as well as catalyst support. This review focused on the recent advances in electrocatalytic activities of carbon dots. The mechanisms of common electrocatalytic reactions and the role of the catalysts are also discussed. The review also proposed future developments and other research directions to overcome current limitations.

Keywords

References

  1. M. Zhou, H. L. Wang, S. Guo, Chem. Soc. Rev., 2016, 45(5), 1273-1307. https://doi.org/10.1039/C5CS00414D
  2. Y. Holade, K. Servat, S. Tingry, T. W. Napporn, H. Remita, D. Cornu, K. B. Kokoh, ChemPhysChem, 2017, 18919), 2573-2605.
  3. S. Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev., 2015, 44(1), 362-381. https://doi.org/10.1039/C4CS00269E
  4. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc., 2004, 126(40), 12736-12737. https://doi.org/10.1021/ja040082h
  5. Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, S. Y. Xie, J. Am. Chem. Soc., 2006, 128(24), 7756-7757. https://doi.org/10.1021/ja062677d
  6. H. Ding, S. B. Yu, J. S. Wei, H. M. Xiong, ACS Nano, 2016, 10(1), 484-491. https://doi.org/10.1021/acsnano.5b05406
  7. S. N. Baker, G. A. Baker, Angew. Chemie - Int. Ed., 2010, 49(38), 6726-6744. https://doi.org/10.1002/anie.200906623
  8. H. Li, Z. Kang, Y. Liu, S. T. Lee, J. Mater. Chem., 2012, 22(46), 24230-24253. https://doi.org/10.1039/c2jm34690g
  9. V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W. G. Lee, T. Yoon, K. S. Kim, ACS Catal., 2017, 7(10), 7196-7225. https://doi.org/10.1021/acscatal.7b01800
  10. J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater., 2017, 29(14), 1605838. https://doi.org/10.1002/adma.201605838
  11. N. Dubouis, A. Grimaud, Chem. Sci., 2019, 10(40), 9165-9181. https://doi.org/10.1039/C9SC03831K
  12. V. C. Hoang, K. Dave, V. G. Gomes, Nano Energy, 2019, 66, 104093. https://doi.org/10.1016/j.nanoen.2019.104093
  13. G. Wu, N. Li, C. S. Dai, D. R. Zhou, Mater. Chem. Phys., 2004, 83(2-3), 307-314. https://doi.org/10.1016/j.matchemphys.2003.10.005
  14. B. Y. W. Li, Y. Liu, M. Wu, X. Feng, S. A. T. Redfern, Y. Shang, X. Yong, T. Feng, K. Wu, Z. Liu, B. Li, Z. Chen, J. S. Tse, S. Lu, Adv. Mater., 2018, 30(31), 1800676. https://doi.org/10.1002/adma.201800676
  15. D. V. Esposito, S. T. Hunt, Y. C. Kimmel, J. G. Chen, J. Am. Chem.Soc., 2012, 134(6), 3025-3033. https://doi.org/10.1021/ja208656v
  16. Y. Yang, J. Liu, S. Guo, Y. Liu, Z. Kang, J. Mater. Chem. A, 2015, 3(36), 18598-18604. https://doi.org/10.1039/C5TA04867B
  17. J. Zheng, Electrochim. Acta, 2017, 247, 381-391. https://doi.org/10.1016/j.electacta.2017.07.024
  18. Y. Xu, M. Kraft, R. Xu, Chem. Soc. Rev., 2016, 45(11), 3039-3052. https://doi.org/10.1039/C5CS00729A
  19. C. Hu, L. Dai, Angew. Chemie - Int. Ed., 2016, 55(39), 11736-11758. https://doi.org/10.1002/anie.201509982
  20. M. W. Chung, C. H. Choi, S. Y. Lee, S. I. Woo, Nano Energy, 2015, 11, 526-532. https://doi.org/10.1016/j.nanoen.2014.11.002
  21. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, Nano Res., 2015, 8(2), 355-381. https://doi.org/10.1007/s12274-014-0644-3
  22. M. Semeniuk, Z. Yi, V. Poursorkhabi, J. Tjong, S. Jaffer, Z. H. Lu and M. Sain, ACS Nano, 2019, 13(6), 6224-6255. https://doi.org/10.1021/acsnano.9b00688
  23. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, A. A. Firsov, Science, 2004, 306(5696), 666-669. https://doi.org/10.1126/science.1102896
  24. S. Tang, W. Wu, X. Xie, X. Li, J. Gu, RSC Adv., 2017, 7(16), 9862-9871. https://doi.org/10.1039/C7RA01134B
  25. C. Hu, Y. Xiao, Y. Zou, L. Dai, Electrochem. Energy Rev., 2018, 1(1), 84-112. https://doi.org/10.1007/s41918-018-0003-2
  26. J. Zhang, Z. Xia, L. Dai, Sci. Adv., 2015, 1(7), e1500564. https://doi.org/10.1126/sciadv.1500564
  27. P. Zhang, J. S. Wei, X. B. Chen, H. M. Xiong, J. Colloid Interface Sci., 2019, 537, 716-724. https://doi.org/10.1016/j.jcis.2018.11.024
  28. Z. Lei, S. Xu, J. Wan, P. Wu, Nanoscale, 2016, 8(4), 2219-2226. https://doi.org/10.1039/C5NR07335A
  29. D. W. Zheng, B. Li, C. X. Li, J. X. Fan, Q. Lei, C. Li, Z. Xu,X. Z. Zhang, ACS Nano, 2016, 10(9), 8715-8722. https://doi.org/10.1021/acsnano.6b04156
  30. Y. Song, S. Chen, ACS Appl. Mater. Interfaces, 2014, 6(16), 14050-14060. https://doi.org/10.1021/am503388z
  31. W. Li, Z. Wei, B. Wang, Y. Liu, H. Song, Z. Tang, B. Yang, S. Lu, Mater. Chem. Front., 2020, 4(1), 277-284. https://doi.org/10.1039/C9QM00618D
  32. L. SGao, Y Chen, HFan, X Wei, C Hu, Li Wang, J. Mater. Chem. A, 2014, 2(18), 6320-6325. https://doi.org/10.1039/c3ta15443b
  33. K. Kakaei, H. Javan, M. Khamforoush, S. A. Zarei, Int. J. Hydrogen Energy, 2016, 41(33), 14684-14691. https://doi.org/10.1016/j.ijhydene.2016.06.093
  34. S. Bhattacharyya, B. Konkena, K. Jayaramulu, W. Schuhmann, T. K. Maji, J. Mater. Chem. A, 2017, 5(26), 13573-13580. https://doi.org/10.1039/C7TA00281E
  35. R. Atchudan, T. N. J. I. Edison, Y. R. Lee, J. Colloid Interface Sci., 2016, 482, 8-18. https://doi.org/10.1016/j.jcis.2016.07.058
  36. E. Martínez-Perinan, I. Bravo, S. J. Rowley-Neale, E. Lorenzo, C. E. Banks, Electroanalysis, 2018, 30(3), 436- 444. https://doi.org/10.1002/elan.201700718
  37. A. Datta, S. Kapri, S. Bhattacharyya, J. Mater. Chem. A, 2016, 4(38), 14614-14624. https://doi.org/10.1039/C6TA04737H
  38. J. Shen, Y. Li, Y. Su, Y. Zhu, H. Jiang, X. Yang, C. Li, Nanoscale, 2015, 7(5), 2003-2008. https://doi.org/10.1039/C4NR06484D
  39. K. Kakaei, Int. J. Hydrogen Energy, 2017, 42(16), 11605-11613. https://doi.org/10.1016/j.ijhydene.2017.01.057
  40. T. Bao, L. Song, S. Zhang, Chem. Eng. J., 2018, 351, 189-194. https://doi.org/10.1016/j.cej.2018.06.080
  41. W. Li, Y. Liu, M. Wu, X. Feng, S. A. T. Redfern, Y. Shang, X. Yong, T. Feng, K. Wu, Z. Liu, B. Li, Z. Chen, J. S. Tse, S. Lu, B. Yang, Adv. Mater., 2018, 30(31), 1800676(1-8). https://doi.org/10.1002/adma.201800676
  42. Q. Dang, F. Liao, Y. Sun, S. Zhang, H. Huang, W. Shen, Z. Kang, Y. Shi, M. Shao, Electrochim. Acta, 2019, 299, 828-834. https://doi.org/10.1016/j.electacta.2019.01.031
  43. Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Z. Tang, T. Zhang, S. Lu, Angew. Chemie - Int. Ed., 2020, 59(4), 1718-1726. https://doi.org/10.1002/anie.201913910
  44. G. Li, S. Hou, L. Gui, F. Feng, D. Zhang, B. He, L. Zhao, Appl. Catal. B Environ., 2019, 257, 117919. https://doi.org/10.1016/j.apcatb.2019.117919
  45. L. Tian, J. Wang, K. Wang, H. Wo, X. Wang, W. Zhuang, T. Li, X. Du, Carbon, 2019, 143, 457-466. https://doi.org/10.1016/j.carbon.2018.11.041
  46. P. Zhang, D. Bin, J. S. Wei, X. Q. Niu, X. B. Chen, Y. Y. Xia, H. M. Xiong, ACS Appl. Mater. Interfaces, 2019, 11(15), 14085-14094. https://doi.org/10.1021/acsami.8b22557
  47. S. Zhao, C. Li, J. Liu, N. Liu, S. Qiao, Y. Han, H. Huang, Y. Liu, Z. Kang, Carbon, 2015, 92, 64-73. https://doi.org/10.1016/j.carbon.2015.03.002
  48. D. Tang, J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu, Z. Kang, ACS Appl. Mater. Interfaces, 2014, 6(10), 7918-7925. https://doi.org/10.1021/am501256x
  49. R. Canton-Vitoria, L. Vallan, E. Urriolabeitia, A. M. Benito, W. K. Maser, N. Tagmatarchis, Chem. - A Eur. J., 2018, 24(41), 10468-10474. https://doi.org/10.1002/chem.201801425
  50. Z. Y. Shih, A. P. Periasamy, P. C. Hsu, H. T. Chang, Appl. Catal. B Environ., 2013, 132-133, 363-369. https://doi.org/10.1016/j.apcatb.2012.12.004
  51. L. Wang, S. Zhao, X. Wu, S. Guo, J. Liu, N. Liu, H. Huang, Y. Liu, Z. Kang, RSC Adv., 2016, 6(71), 66893-66899. https://doi.org/10.1039/C6RA11396F
  52. L. Zhang, Y. Yang, M. A. Ziaee, K. Lu, R. Wang, ACS Appl. Mater. Interfaces, 2018, 10(11), 9460-9467. https://doi.org/10.1021/acsami.8b00211
  53. S. Zhao, C. Li, H. Huang, Y. Liu, Z. Kang, J. Mater., 2015, 1(3), 236-244. https://doi.org/10.1016/j.jmat.2015.07.003
  54. J. Cao, Y. Hu, L. Chen, J. Xu, Z. Chen, Int. J. Hydrogen Energy, 2017, 42(5), 2931-2942. https://doi.org/10.1016/j.ijhydene.2017.01.029
  55. S. Guo, S. Zhao, X. Wu, H. Li, Y. Zhou, C. Zhu, N. Yang, X. Jiang, J. Gao, L. Bai, Y. Liu, Y. Lifshitz, S. T. Lee, Z. Kang, Nat. Commun., 2017, 8(1), 1-9. https://doi.org/10.1038/s41467-016-0009-6
  56. J. Zhang, J. Chen, Y. Luo, Y. Chen, X. Wei, G. Wang, R. Wang, Appl. Surf. Sci., 2019, 466, 911-919. https://doi.org/10.1016/j.apsusc.2018.10.116
  57. C. Hu, C. Yu, M. Li, X. Wang, Q. Dong, G. Wang, J. Qiu, Chem. Commun., 2015, 51(16), 3419-3422. https://doi.org/10.1039/C4CC08735F
  58. M. Wang, J. Fang, L. Hu, Y. Lai, Z. Liu, Int. J. Hydrogen Energy, 2017, 42(33), 21305-21310. https://doi.org/10.1016/j.ijhydene.2017.07.045
  59. L. Zhou, P. Fu, Y. Wang, L. Sun, Y. Yuan, J. Mater. Chem. A, 2016, 4(19), 7222-7229. https://doi.org/10.1039/C6TA01662F
  60. W. J. Niu, R. H. Zhu, Yan-Hua, H. B. Zeng, S. Cosnier, X. J. Zhang, D. Shan, Carbon, 2016, 109, 402-410. https://doi.org/10.1016/j.carbon.2016.08.002
  61. H. Zhang, Y. Wang, D. Wang, Y. Li, X. Liu, P. Liu, H. Yang, T. An, Z. Tang, H. Zhao, Small, 2014, 10(16), 3371-3378. https://doi.org/10.1002/smll.201400781
  62. H. Liu, Q. Zhao, J. Liu, X. Ma, Y. Rao, X. Shao, Z. Li, W. Wu, H. Ning, M. Wu, Appl. Surf. Sci., 2017, 423, 909-916. https://doi.org/10.1016/j.apsusc.2017.06.225
  63. L. L. Qiqi Li, Sheng Zhang, Liming Dai, J. Am. Chem. Soc., 2012, 134(46), 18932-18935. https://doi.org/10.1021/ja309270h
  64. R. Yan, H. Wu, Q. Zheng, J. Wang, J. Huang, K. Ding, Q. Guo, J. Wang, RSC Adv., 2014, 4, 23097-23106. https://doi.org/10.1039/C4RA02336F
  65. J. P. Guin, S. K. Guin, T. Debnath, H. N. Ghosh, Carbon, 2016, 109, 517-528. https://doi.org/10.1016/j.carbon.2016.08.039
  66. M. Favaro, L. Ferrighi, G. Fazio, L. Colazzo, C. Di Valentin, C. Durante, F. Sedona, A. Gennaro, S. Agnoli, G. Granozzi, ACS Catal., 2015, 5(1), 129-144. https://doi.org/10.1021/cs501211h
  67. C. P. Deming, R. Mercado, J. E. Lu, V. Gadiraju, M. Khan, S. Chen, ACS Sustain. Chem. Eng., 2016, 4(12), 6580-6589. https://doi.org/10.1021/acssuschemeng.6b01476
  68. C. P. Deming, R. Mercado, V. Gadiraju, S. W. Sweeney, M. Khan, S. Chen, ACS Sustain. Chem. Eng., 2015, 3(12), 3315-3323. https://doi.org/10.1021/acssuschemeng.5b00927
  69. G. He, Y. Song, K. Liu, A. Walter, S. Chen, S. Chen, ACS Catal., 2013, 3(5), 831-838. https://doi.org/10.1021/cs400114s
  70. P. Luo, L. Jiang, W. Zhang, X. Guan, Chem. Phys. Lett., 2015, 641, 29-32. https://doi.org/10.1016/j.cplett.2015.10.042
  71. K. Liu, Y. Song, S. Chen, Int. J. Hydrogen Energy, 2016, 41(3), 1559-1567. https://doi.org/10.1016/j.ijhydene.2015.10.059
  72. K. H. Koh, S. H. Noh, T. H. Kim, W. J. Lee, S. C. Yi, T. H. Han, RSC Adv., 2017, 7(42), 26113-26119. https://doi.org/10.1039/C6RA27873F
  73. J. Li, X. Zhang, Z. Zhang, Z. Li, M. Gao, H. Wei, H. Chu, Electrochim. Acta, 2019, 304, 487-494. https://doi.org/10.1016/j.electacta.2019.03.023
  74. Z. Chen, K. Mou, X. Wang , L. Liu, Angew. Chemie, 2018, 130(39), 12972-C12976 https://doi.org/10.1002/ange.201807643
  75. R. Vinoth, I. M. Patil, A. Pandikumar, B. A. Kakade, N. M. Huang, D. D. Dionysios, B. Neppolian, ACS Omega, 2016, 1(5), 971-980. https://doi.org/10.1021/acsomega.6b00275
  76. J. J. Lv, J. Zhao, H. Fang, L. P. Jiang, L. L. Li, J. Ma, J. J. Zhu, Small, 2017, 13, 1-10.
  77. Z. Luo, D. Yang, G. Qi, J. Shang, H. Yang, Y. Wang, L. Yuwen, T. Yu, W. Huang, L. Wang, J. Mater. Chem. A, 2014, 2(48), 20605-20611. https://doi.org/10.1039/C4TA05096G
  78. Y. Yao, Y. Guo, W. Du, X. Tong, X. Zhang, J. Mater. Sci. Mater. Electron., 2018, 29(20), 17695-17705. https://doi.org/10.1007/s10854-018-9875-5
  79. M. Wang, Z. Fang, K. Zhang, J. Fang, F. Qin, Z. Zhang, J. Li, Y. Liu, Y. Lai, Nanoscale, 2016, 8(22), 11398-11402. https://doi.org/10.1039/C6NR02622B
  80. H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, J. Am. Chem. Soc., 2015, 137(24), 7588-7591. https://doi.org/10.1021/jacs.5b03799
  81. M. Hasanzadeh, N. Shadjou, M. Marandi, J. Alloys Compd., 2016, 688, 171-186. https://doi.org/10.1016/j.jallcom.2016.07.202
  82. X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Nanoscale, 2014, 6(5), 2603-2607. https://doi.org/10.1039/c3nr05578g
  83. H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P.M. Ajayan, J. K. Tour, ACS Nano, 2014, 8(10), 10837-10843 https://doi.org/10.1021/nn504637y

Cited by

  1. Controlled syngas production by electrocatalytic CO2 reduction on formulated Au25(SR)18 and PtAu24(SR)18 nanoclusters vol.155, pp.1, 2020, https://doi.org/10.1063/5.0057470
  2. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021) vol.11, pp.10, 2021, https://doi.org/10.3390/nano11102525
  3. Promotion of alkaline hydrogen production via Ni‐doping of atomically precise Ag nanoclusters vol.42, pp.12, 2020, https://doi.org/10.1002/bkcs.12404