• Title/Summary/Keyword: Limit Theorem

Search Result 266, Processing Time 0.024 seconds

FATOU THEOREM AND EMBEDDING THEOREMS FOR THE MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL

  • Cho, Hong-Rae;Lee, Jin-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • We investigate the boundary values of the holomorphic mean Lipschitz function. In fact, we prove that the admissible limit exists at every boundary point of the unit ball for the holomorphic mean Lipschitz functions under some assumptions on the Lipschitz order. Moreover, we get embedding theorems of holomorphic mean Lipschitz spaces into Hardy spaces or into the Bloch space on the unit ball in $\mathbb{C}_n$.

MAXIMAL INEQUALITIES AND AN APPLICATION UNDER A WEAK DEPENDENCE

  • HWANG, EUNJU;SHIN, DONG WAN
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • We establish maximal moment inequalities of partial sums under ${\psi}$-weak dependence, which has been proposed by Doukhan and Louhichi [P. Doukhan and S. Louhichi, A new weak dependence condition and application to moment inequality, Stochastic Process. Appl. 84 (1999), 313-342], to unify weak dependence such as mixing, association, Gaussian sequences and Bernoulli shifts. As an application of maximal moment inequalities, a functional central limit theorem is developed for linear processes with ${\psi}$-weakly dependent innovations.

THE PARITIES OF CONTINUED FRACTION

  • Ahn, Young-Ho
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.733-741
    • /
    • 2008
  • Let T be Gauss transformation on the unit interval defined by T (x) = ${\frac{1}{x}}$ where {x} is the fractional part of x. Gauss transformation is closely related to the continued fraction expansions of real numbers. We show that almost every x is mod M normal number of Gauss transformation with respect to intervals whose endpoints are rational or quadratic irrational. Its connection to Central Limit Theorem is also shown.

THE CONJUGATION OF SYLOW ${\pi}-SUBGROUPS$ ON PERIODIC LOCALLY CC-GROUPS

  • KI-YANG PARK
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.285-297
    • /
    • 1997
  • We will study the generalization of theorems on the pe-riodic locally - solvable FC-groups to the theorems on the periodic locally-solvable CC-groups. The main theorem is the Theorem A. For the proof the inverse limit of inverse system and topological ap-proch developed by Dixon is useful.

A Test for Multivariate Normality Focused on Elliptical Symmetry Using Mahalanobis Distances

  • Park, Cheol-Yong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.203-212
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is mainly focused on detecting deviations from elliptical symmetry. This test uses Mahalanobis distances of observations to have some power for deviations from multivariate normality. We derive the limiting distribution of the test statistic by a conditional limit theorem. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under two non-normal distributions.

  • PDF

A Test of Multivariate Normality Oriented for Testing Elliptical Symmetry

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.221-231
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is oriented for detecting deviations from elliptical symmetry. We derive the limiting distribution of the test statistic via a central limit theorem on empirical processes. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under a non-normal distribution.

  • PDF

EXISTENCE OF SIX SOLUTIONS OF THE NONLINEAR HAMILTONIAN SYSTEM

  • Jung, Tack-Sun;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.443-468
    • /
    • 2008
  • We give a theorem of existence of six nontrivial solutions of the nonlinear Hamiltonian system $\.{z}$ = $J(H_z(t,z))$. For the proof of the theorem we use the critical point theory induced from the limit relative category of the torus with three holes and the finite dimensional reduction method.

A PROOF OF STIRLING'S FORMULA

  • Park, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.853-855
    • /
    • 1994
  • The object of present note is to give a very short proof of Stirling's formula which uses only a formula for the generalized zeta function. There are several proofs for this formula. For example, Dr. E. J. Routh gave an elementary proof using Wallis' theorem in lectures at Cambridge ([5, pp.66-68]). We can find another proof which used the Maclaurin summation formula ([5, pp.116-120]). In [1], they used the Central Limit Theorem or the inversion theorem for characteristic functions. In [2], pp. Diaconis and D. Freeman provided another proof similarly as in [1]. J. M. Patin [7] used the Lebesgue dominated convergence theorem.

  • PDF

Central limit theorems for fuzzy random sets (퍼지 랜덤 집합에 대한 중심극한정리)

  • Kwon Joong-Sung;Kim Yun-Kyong;Joo Sang-Yeol;Choi Gyeong-Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.337-342
    • /
    • 2005
  • The present paper establishes the improved version of central limit theorem for sums of level-continuous fuzzy set-valued random variables as a generalization of central limit theorem for sums of independent and identically distributed set-valued random variables.