• Title/Summary/Keyword: Lightweight Deep Neural Network

Search Result 38, Processing Time 0.026 seconds

Lightweight CNN based Meter Digit Recognition

  • Sharma, Akshay Kumar;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • Image processing is one of the major techniques that are used for computer vision. Nowadays, researchers are using machine learning and deep learning for the aforementioned task. In recent years, digit recognition tasks, i.e., automatic meter recognition approach using electric or water meters, have been studied several times. However, two major issues arise when we talk about previous studies: first, the use of the deep learning technique, which includes a large number of parameters that increase the computational cost and consume more power; and second, recent studies are limited to the detection of digits and not storing or providing detected digits to a database or mobile applications. This paper proposes a system that can detect the digital number of meter readings using a lightweight deep neural network (DNN) for low power consumption and send those digits to an Android mobile application in real-time to store them and make life easy. The proposed lightweight DNN is computationally inexpensive and exhibits accuracy similar to those of conventional DNNs.

Lightweight Single Image Super-Resolution by Channel Split Residual Convolution

  • Liu, Buzhong
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.12-25
    • /
    • 2022
  • In recent years, deep convolutional neural networks have made significant progress in the research of single image super-resolution. However, it is difficult to be applied in practical computing terminals or embedded devices due to a large number of parameters and computational effort. To balance these problems, we propose CSRNet, a lightweight neural network based on channel split residual learning structure, to reconstruct highresolution images from low-resolution images. Lightweight refers to designing a neural network with fewer parameters and a simplified structure for lower memory consumption and faster inference speed. At the same time, it is ensured that the performance of recovering high-resolution images is not degraded. In CSRNet, we reduce the parameters and computation by channel split residual learning. Simultaneously, we propose a double-upsampling network structure to improve the performance of the lightweight super-resolution network and make it easy to train. Finally, we propose a new evaluation metric for the lightweight approaches named 100_FPS. Experiments show that our proposed CSRNet not only speeds up the inference of the neural network and reduces memory consumption, but also performs well on single image super-resolution.

Trends in Lightweight Neural Network Algorithms and Hardware Acceleration Technologies for Transformer-based Deep Neural Networks (Transformer를 활용한 인공신경망의 경량화 알고리즘 및 하드웨어 가속 기술 동향)

  • H.J. Kim;C.G. Lyuh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.12-22
    • /
    • 2023
  • The development of neural networks is evolving towards the adoption of transformer structures with attention modules. Hence, active research focused on extending the concept of lightweight neural network algorithms and hardware acceleration is being conducted for the transition from conventional convolutional neural networks to transformer-based networks. We present a survey of state-of-the-art research on lightweight neural network algorithms and hardware architectures to reduce memory usage and accelerate both inference and training. To describe the corresponding trends, we review recent studies on token pruning, quantization, and architecture tuning for the vision transformer. In addition, we present a hardware architecture that incorporates lightweight algorithms into artificial intelligence processors to accelerate processing.

Deep Learning Assisted Differential Cryptanalysis for the Lightweight Cipher SIMON

  • Tian, Wenqiang;Hu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.600-616
    • /
    • 2021
  • SIMON and SPECK are two families of lightweight block ciphers that have excellent performance on hardware and software platforms. At CRYPTO 2019, Gohr first introduces the differential cryptanalysis based deep learning on round-reduced SPECK32/64, and finally reduces the remaining security of 11-round SPECK32/64 to roughly 38 bits. In this paper, we are committed to evaluating the safety of SIMON cipher under the neural differential cryptanalysis. We firstly prove theoretically that SIMON is a non-Markov cipher, which means that the results based on conventional differential cryptanalysis may be inaccurate. Then we train a residual neural network to get the 7-, 8-, 9-round neural distinguishers for SIMON32/64. To prove the effectiveness for our distinguishers, we perform the distinguishing attack and key-recovery attack against 15-round SIMON32/64. The results show that the real ciphertexts can be distinguished from random ciphertexts with a probability close to 1 only by 28.7 chosen-plaintext pairs. For the key-recovery attack, the correct key was recovered with a success rate of 23%, and the data complexity and computation complexity are as low as 28 and 220.1 respectively. All the results are better than the existing literature. Furthermore, we briefly discussed the effect of different residual network structures on the training results of neural distinguishers. It is hoped that our findings will provide some reference for future research.

Predictive System for Unconfined Compressive Strength of Lightweight Treated Soil(LTS) using Deep Learning (딥러닝을 이용한 경량혼합토의 일축압축강도 예측 시스템)

  • Park, Bohyun;Kim, Dookie;Park, Dae-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.18-25
    • /
    • 2020
  • The unconfined compressive strength of lightweight treated soils strongly depends on mixing ratio. To characterize the relation between various LTS components and the unconfined compressive strength of LTS, extensive studies have been conducted, proposing normalized factor using regression models based on their experimental results. However, these results obtained from laboratory experiments do not expect consistent prediction accuracy due to complicated relation between materials and mix proportions. In this study, deep neural network model(Deep-LTS), which was based on experimental test results performed on various mixing conditions, was applied to predict the unconfined compressive strength. It was found that the unconfined compressive strength LTS at a given mixing ratio could be resonable estimated using proposed Deep-LTS.

Deep Neural Network-based Jellyfish Distribution Recognition System Using a UAV (무인기를 이용한 심층 신경망 기반 해파리 분포 인식 시스템)

  • Koo, Jungmo;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.432-440
    • /
    • 2017
  • In this paper, we propose a jellyfish distribution recognition and monitoring system using a UAV (unmanned aerial vehicle). The UAV was designed to satisfy the requirements for flight in ocean environment. The target jellyfish, Aurelia aurita, is recognized through convolutional neural network and its distribution is calculated. The modified deep neural network architecture has been developed to have reliable recognition accuracy and fast operation speed. Recognition speed is about 400 times faster than GoogLeNet by using a lightweight network architecture. We also introduce the method for selecting candidates to be used as inputs to the proposed network. The recognition accuracy of the jellyfish is improved by removing the probability value of the meaningless class among the probability vectors of the evaluated input image and re-evaluating it by normalization. The jellyfish distribution is calculated based on the unit jellyfish image recognized. The distribution level is defined by using the novelty concept of the distribution map buffer.

Network Anomaly Traffic Detection Using WGAN-CNN-BiLSTM in Big Data Cloud-Edge Collaborative Computing Environment

  • Yue Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.375-390
    • /
    • 2024
  • Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.

Related-key Neural Distinguisher on Block Ciphers SPECK-32/64, HIGHT and GOST

  • Erzhena Tcydenova;Byoungjin Seok;Changhoon Lee
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.72-84
    • /
    • 2023
  • With the rise of the Internet of Things, the security of such lightweight computing environments has become a hot topic. Lightweight block ciphers that can provide efficient performance and security by having a relatively simpler structure and smaller key and block sizes are drawing attention. Due to these characteristics, they can become a target for new attack techniques. One of the new cryptanalytic attacks that have been attracting interest is Neural cryptanalysis, which is a cryptanalytic technique based on neural networks. It showed interesting results with better results than the conventional cryptanalysis method without a great amount of time and cryptographic knowledge. The first work that showed good results was carried out by Aron Gohr in CRYPTO'19, the attack was conducted on the lightweight block cipher SPECK-/32/64 and showed better results than conventional differential cryptanalysis. In this paper, we first apply the Differential Neural Distinguisher proposed by Aron Gohr to the block ciphers HIGHT and GOST to test the applicability of the attack to ciphers with different structures. The performance of the Differential Neural Distinguisher is then analyzed by replacing the neural network attack model with five different models (Multi-Layer Perceptron, AlexNet, ResNext, SE-ResNet, SE-ResNext). We then propose a Related-key Neural Distinguisher and apply it to the SPECK-/32/64, HIGHT, and GOST block ciphers. The proposed Related-key Neural Distinguisher was constructed using the relationship between keys, and this made it possible to distinguish more rounds than the differential distinguisher.

  • PDF

Lightweight image classifier for CIFAR-10

  • Sharma, Akshay Kumar;Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.286-289
    • /
    • 2021
  • Image classification is one of the fundamental applications of computer vision. It enables a system to identify an object in an image. Recently, image classification applications have broadened their scope from computer applications to edge devices. The convolutional neural network (CNN) is the main class of deep learning neural networks that are widely used in computer tasks, and it delivers high accuracy. However, CNN algorithms use a large number of parameters and incur high computational costs, which hinder their implementation in edge hardware devices. To address this issue, this paper proposes a lightweight image classifier that provides good accuracy while using fewer parameters. The proposed image classifier diverts the input into three paths and utilizes different scales of receptive fields to extract more feature maps while using fewer parameters at the time of training. This results in the development of a model of small size. This model is tested on the CIFAR-10 dataset and achieves an accuracy of 90% using .26M parameters. This is better than the state-of-the-art models, and it can be implemented on edge devices.

LDCSIR: Lightweight Deep CNN-based Approach for Single Image Super-Resolution

  • Muhammad, Wazir;Shaikh, Murtaza Hussain;Shah, Jalal;Shah, Syed Ali Raza;Bhutto, Zuhaibuddin;Lehri, Liaquat Ali;Hussain, Ayaz;Masrour, Salman;Ali, Shamshad;Thaheem, Imdadullah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.463-468
    • /
    • 2021
  • Single image super-resolution (SISR) is an image processing technique, and its main target is to reconstruct the high-quality or high-resolution (HR) image from the low-quality or low-resolution (LR) image. Currently, deep learning-based convolutional neural network (CNN) image super-resolution approaches achieved remarkable improvement over the previous approaches. Furthermore, earlier approaches used hand designed filter to upscale the LR image into HR image. The design architecture of such approaches is easy, but it introduces the extra unwanted pixels in the reconstructed image. To resolve these issues, we propose novel deep learning-based approach known as Lightweight deep CNN-based approach for Single Image Super-Resolution (LDCSIR). In this paper, we propose a new architecture which is inspired by ResNet with Inception blocks, which significantly drop the computational cost of the model and increase the processing time for reconstructing the HR image. Compared with the other state of the art methods, LDCSIR achieves better performance in terms of quantitively (PSNR/SSIM) and qualitatively.