• Title/Summary/Keyword: Lightning Induced Transients

Search Result 8, Processing Time 0.021 seconds

Lightning Effects on Aircraft (항공기에 대한 낙뢰의 영향)

  • Choi, I.S.;Kim, S.S.;Han, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1787-1789
    • /
    • 2004
  • This paper deals with the lightning effects on aircraft. The effects are divided into two groups. The one is the direct effect due to the direct attachment of the lightning channel and/or conduction of lightning current. The other is the indirect effect like electrical transients induced by lightning in aircraft conductive components such as electric circuits. In this paper presents the analysis of lightning mechanism.

  • PDF

Phenomenon of Power Interference and Screening Factor (전력유도 현상과 차폐계수)

  • 황종선;김영민;이경욱;김재준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.621-624
    • /
    • 2001
  • A metal sheath provides a cable with electrostatic screening and a degree of magnetic screening. The presence of a screen on a cable also reduces the induction arising from the high-frequency components of transients caused by power-line switching and also induced transients from lightning strokes; such transient induced voltages are of increasing importance with the increasing use of miniaturized telecommunication equipment with very small thermal capacity. This paper describes electrostatic induction and electromagnetic induction caused by power interference. Also screening factors are proposed.

  • PDF

New Simulation Method of Flashover Rate by Connection of EMTP and MATLAB

  • Seo, Hun-Chul;Han, Joon;Choi, Sun-Kyu;Lee, Byung-Sung;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.602-608
    • /
    • 2016
  • Because of the random characteristics of lightning, the Monte Carlo method is applied to estimate the flashover rate due to lightning, however, the simulations using previous methods are difficult to both beginner and expert in power corporations. Therefore, this paper proposes the new and easy method to simulate the flashover rate by connection of electromagnetic transients program (EMTP) and MATLAB. The magnitude of a lightning strike is based on a curve measured in the field, while the classification of direct and indirect lightning depends on the striking distance. In a Korean distribution system, the flashover rate induced by lightning is simulated using proposed method. Simulations of the footing resistance according to the existence of an overhead ground wire (OHGW) are performed and the simulation results are discussed. The simulation results are compared with findings obtained with the IEEE Flash 2.0 program.

Development and Verification of Aircraft Controller and Transceiver Considering Lightning Induced Transient Susceptibility (유도낙뢰를 고려한 항공기용 제어기 및 송수신기 개발 및 검증)

  • Seo, Jung-Won;Park, Jae-Soo;Yoon, Chang-Bae;Hong, Su-Woon;Jung, Byoung-Koo;Shin, Young-Jun;Ha, Jung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.583-593
    • /
    • 2018
  • Lightning causes physical damage to aircraft, such as melting, burning and arcing, and magnetic field that occurs on the aircraft's outer body during the penetration of a lightning stroke causes voltage and current transients in the electronics and wiring within the aircraft. This effect will cause induced lightning strikes in the aircraft's internal airborne electronic systems, preventing safe flight. This paper introduces protection circuit design techniques, and the test results that meet the requirements for certification of criteria.

Electromagnetic Field Analysis on Surge Response of 500 kV EHV Single Circuit Transmission Tower in Lightning Protection System using Neural Networks

  • Jaipradidtham, Chamni
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1637-1640
    • /
    • 2005
  • This paper presents a technique for electromagnetic field analysis on surge response due to Mid-span back-flashovers effects in lightning protection system of 500 kV EHV single circuit transmission tower by the neural networks method. These analyses are based on modeling lightning return stroke as well as on coupling the electromagnetic fields of the stroke channel to the line. The ground conductivity influences both the electric field as well as the coupling mechanism and hence the magnitude and wave shape of the induced voltage. The technique can be used to analyzed the corona voltage effect, the effective of stroke to the span tower, the surge impedance of transmission lines. The maximum voltage from flashovers effects in the lines. The model is compatible with general electromagnetic transients programs such as the ATP-EMTP. The simulation results show that this study analyses for time-domain with those produced by a cascade multi-section model, the surge impedance of a full-sized tower hit directly by a lightning stroke is discussed.

  • PDF

Propagation of Lightning Surges on Power AC Lines through Distribution Transformers (배전용 변압기를 통한 저압전원선으로의 뇌서지 전파)

  • Lee, Bok-Hee;Lee, Su-Bong;Lee, Dong-Moon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.468-471
    • /
    • 2002
  • A strong need to improve the quality of electric power is increased because of increasing use of the sensitive and small-sized electronic devices. The surges on the low-voltage ac power lines are induced by nearby lightning return strokes, and the facilities for HA, OA, FA, ME as well as computer are easily damaged by high-voltage transients. The behaviors of lightning surge characteristics transferred from the primary winding to the secondary winding in distribution transformers using a Marx generator were experimentally investigated. The transfer characteristics of lightning surge associated with a custom service ground of secondary side were also examined.

  • PDF

Phenomenon of Power Interference and Screening Factor (전력유도 현상과 차폐계수)

  • Hwang, Jong-Sun;Kim, Yeong-Min;Lee, Kyoung-Wook;Kim, Jae-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.621-624
    • /
    • 2001
  • A metal sheath provides a cable with electrostatic screening and a degree of magnetic screening. The presence of a screen on a cable also reduces the induction arising from the high-frequency components of transients caused by power-line switching and also induced transients from lightning strokes; such transient induced voltages are of increasing importance with the increasing use of miniaturized telecommunication equipment with very small thermal capacity. This paper describes electrostatic induction and electromagnetic induction caused by power interference. Also screening factors are proposed.

  • PDF

Analysis of Indirect Lightning Impact on Aircraft Shielded Cable Structure in accordance with RTCA DO-160G Sec. 22 (항공기용 차폐 케이블의 구조에 따른 RTCA DO-160G Sec. 22 간접낙뢰 영향성 분석)

  • Sung-Yeon Kim;Tae-Hyeon Kim;Min-Seong Kim;Wang-Sang Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.35-45
    • /
    • 2023
  • In this paper, we analyze the influence of indirect lightning strikes based on the structure of shielded cables used in an aircraft and propose a cable structure to enhance shielding effectiveness. Cables in an aircraft account for the largest proportion among components and play a crucial role in connecting aircraft frames and electronic devices; thus, making them highly influential. In particular, indirect lightning strike noise can lead to malfunctions and cause damage in aircraft electronic equipment, making the utilization of shielded cables essential for mitigating damage caused by indirect lightning strike noise. We conducted an analysis of the impact of indirect lightning strikes on aircraft shielded cables considering factors, such as the presence of shielding layers, core, and insulation in the cable structure. Furthermore, we validated our findings through simulations and experiments by applying the internationally recognized standard for indirect lightning, RTCA DO-160G Sec. 22.