• 제목/요약/키워드: Lightlike manifold

검색결과 93건 처리시간 0.017초

TRANSVERSAL LIGHTLIKE SUBMERSIONS FROM INDEFINITE SASAKIAN MANIFOLDS ONTO LIGHTLIKE MANIFOLDS

  • Shiv Sharma Shukla;Vipul Singh
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1191-1213
    • /
    • 2023
  • In this paper, we introduce and study two new classes of lightlike submersions, called radical transversal and transversal lightlike submersions between an indefinite Sasakian manifold and a lightlike manifold. We give examples and investigate the geometry of distributions involved in the definitions of these lightlike submersions. We also study radical transversal and transversal lightlike submersions from an indefinite Sasakian manifold onto a lightlike manifold with totally contact umbilical fibers.

GCR-LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN PRODUCT MANIFOLD

  • Kumar, Sangeet;Kumar, Rakesh;Nagaich, Rakesh Kumar
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.883-899
    • /
    • 2014
  • We introduce GCR-lightlike submanifold of a semi-Riemannian product manifold and give an example. We study geodesic GCR-lightlike submanifolds of a semi-Riemannian product manifold and obtain some necessary and sufficient conditions for a GCR-lightlike submanifold to be a GCR-lightlike product. Finally, we discuss minimal GCR-lightlike submanifolds of a semi-Riemannian product manifold.

SCREEN SLANT LIGHTLIKE SUBMERSIONS

  • SHUKLA, S.S.;OMAR, SHIVAM;YADAV, SARVESH KUMAR
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.1073-1087
    • /
    • 2022
  • We introduce two new classes of lightlike submersions, namely, screen slant and screen semi-slant lightlike submersions from an indefinite Kaehler manifold to a lightlike manifold giving characterization theorems with non trivial examples for both classes. Integrability conditions of all distributions related to the definitions of these submersions have been obtained.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.515-531
    • /
    • 2018
  • Jin studied lightlike hypersurfaces of an indefinite Kaehler manifold [6, 8] or indefinite trans-Sasakian manifold [7] with a quarter-symmetric metric connection. Jin also studied generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection [10]. We study generic lightlike submanifolds of an indefinite Kaehler manifold with a quarter-symmetric metric connection.

CLASSIFICATION OF TWISTED PRODUCT LIGHTLIKE SUBMANIFOLDS

  • Sangeet Kumar;Megha Pruthi
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.1003-1016
    • /
    • 2023
  • In this paper, we introduce the idea of twisted product lightlike submanifolds of semi-Riemannian manifolds and provide non-trivial examples of such lightlike submanifolds. Then, we prove the non-existence of proper isotropic or totally lightlike twisted product submanifolds of a semi-Riemannian manifold. We also show that for a twisted product lightlike submanifold of a semi-Riemannian manifold, the induced connection ∇ is not a metric connection. Further, we prove that a totally umbilical SCR-lightlike submanifold of an indefinite Kaehler manifold ${\tilde{M}}$ does not admit any twisted product SCR-lightlike submanifold of the type M×ϕMT, where M is a totally real submanifold and MT is a holomorphic submanifold of ${\tilde{M}}$. Consequently, we obtain a geometric inequality for the second fundamental form of twisted product SCR-lightlike submanifolds of the type MT×ϕM of an indefinite Kaehler manifold ${\tilde{M}}$, in terms of the gradient of ln ϕ, where ϕ stands for the twisting function. Subsequently, the equality case of this inequality is discussed. Finally, we construct a non-trivial example of a twisted product SCR-lightlike submanifold in an indefinite Kaehler manifold.

ASCREEN LIGHTLIKE HYPERSURFACES OF AN INDEFINITE SASAKIAN MANIFOLD

  • Jin, Dae Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권1호
    • /
    • pp.25-35
    • /
    • 2013
  • In this paper, we study lightlike hypersurfaces of an indefinite Sasakian manifold $\bar{M}$. First, we construct a type of lightlike hypersurface according to the form of the structure vector field of $\bar{M}$, named by ascreen lightlike hypersurface. Next, we characterize the geometry of such ascreen lightlike hypersurfaces.

CHARACTERIZATIONS ON GEODESIC GCR-LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER STATISTICAL MANIFOLD

  • Rani, Vandana;Kaur, Jasleen
    • 호남수학학술지
    • /
    • 제44권3호
    • /
    • pp.432-446
    • /
    • 2022
  • This article introduces the structure of GCR-lightlike submanifolds of an indefinite Kaehler statistical manifold and derives their geometric properties. The characterizations on totally geodesic, mixed geodesic, D-geodesic and D'-geodesic GCR-lightlike submanifolds have also been obtained.

GENERIC LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN PRODUCT MANIFOLDS

  • Nand Kishor Jha;Jatinder Kaur;Sangeet Kumar;Megha Pruthi
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.847-863
    • /
    • 2023
  • We introduce the study of generic lightlike submanifolds of a semi-Riemannian product manifold. We establish a characterization theorem for the induced connection on a generic lightlike submanifold to be a metric connection. We also find some conditions for the integrability of the distributions associated with generic lightlike submanifolds and discuss the geometry of foliations. Then we search for some results enabling a generic lightlike submanifold of a semi-Riemannian product manifold to be a generic lightlike product manifold. Finally, we examine minimal generic lightlike submanifolds of a semi-Riemannian product manifold.

LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD WITH A NON-METRIC θ-CONNECTION

  • Jin, Dae Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제21권4호
    • /
    • pp.229-236
    • /
    • 2014
  • In this paper, we study two types of 1-lightlike submanifolds, named by lightlike hypersurface and half lightlike submanifold, of an indefinite Sasakian manifold admitting non-metric ${\theta}$-connections. We prove that there exist no such two types of 1-lightlike submanifolds of an indefinite Sasakian manifold.