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SCREEN SLANT LIGHTLIKE SUBMERSIONS†

S.S. SHUKLA, SHIVAM OMAR∗ AND SARVESH KUMAR YADAV

Abstract. We introduce two new classes of lightlike submersions, namely,
screen slant and screen semi-slant lightlike submersions from an indefinite
Kaehler manifold to a lightlike manifold giving characterization theorems
with non trivial examples for both classes. Integrability conditions of all
distributions related to the definitions of these submersions have been ob-
tained.
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1. Introduction

In [6], Sahin and Gündüzalp gave the definition of a lightlike submersion
from a semi-Riemannian manifold onto a lightlike manifold. In [3, 4], Sahin
introduced the notions of slant and screen-slant lightlike submanifolds of an
indefinite Hermitian manifold. Following this, Shukla and Yadav defined a screen
semi-slant lightlike submanifold of an indefinite Kaehler manifold in [13]. From
[12], we conclude that, contrary to the Riemannian slant submersions [5], slant
lightlike submersions do not include invariant and anti-invariant subcases. To
address this gap, we define screen slant lightlike submersions from an indefinite
Kaehler manifold onto a lightlike manifold, which includes invariant and anti-
invariant lightlike submersions. The paper is arranged as:

Section 2 is devoted to the basic geometry related to this study. In section 3,
we define a screen slant lightlike submersion from an indefinite Kaehler manifold
onto a lightlike manifold with a non-trivial example. In this section, we also
give a characterization theorem and obtain a necessary and sufficient condition
for the screen distribution to define a totally geodesic foliation. In the last
section, we define a screen semi-slant lightlike submersion from an indefinite
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Kaehler manifold onto a lightlike manifold with non-trivial examples and obtain
the integrability conditions of distributions involved in the definition of these
submersions.

2. Preliminaries

A complex manifold M with a semi-Riemannian metric g of index r, where
0 < r ≤ 2m and an almost complex structure J is called an indefinite Hermitian
manifold, if

g(U1, U2) = g(JU1,JU2), ∀ U1, U2 ∈ Γ(TM). (1)
Further, if (M,J , g) is an indefinite Hermitian manifold with the Levi-Civita
connection ∇ on M , then we call M an indefinite Kaehler manifold if

(∇U1
J )U2 = 0, ∀ U1, U2 ∈ Γ(TM). (2)

Null (or radical) space RadTpM of TpM is defined as RadTpM = {ξ ∈ TpM :
g(U, ξ) = 0, ∀ U ∈ TpM}. If RadTM : p ∈ M → RadTpM gives a C∞

distribution of rank (r > 0) on M such that 0 < r ≤ m, then RadTM is called a
radical distribution on M . In this case, we say that manifold M is an r-lightlike
manifold.

Let ϕ :M1 →M2 be a smooth submersion from a semi-Riemannian manifold
M1 to a lightlike manifold M2. Then, Ker ϕ∗p = {U ∈ TpM1 : ϕ∗pU = 0}. It
follows that (Ker ϕ∗p)

⊥ = {V ∈ TpM1 : g(U, V ) = 0, ∀ U ∈ Ker ϕ∗p} and
Ker ϕ∗p ∩ (Ker ϕ∗p)

⊥ = ∆p 6= {0}. In this case ∆ : p → ∆p is said to be a
radical distribution on M1 at p ∈ M1. As ∆ is a lightlike distribution, we have
Ker ϕ∗ = ∆ ⊥ S(Ker ϕ∗). Similarly (Ker ϕ∗)

⊥ = ∆ ⊥ S(Ker ϕ∗)
⊥. Assume

that dim(∆) = r(> 0). As ∆ ⊂ (S(ker ϕ∗)
⊥)⊥ and (S(ker ϕ∗)

⊥)⊥ is non-
degenerate, so there existsN1, N2..., Nr, such that g(Ni, Nj) = 0, g(ξi, Nj) = δij .
Here {Ni} are null vector fields of (S(Ker ϕ∗)⊥)⊥ and {ξi} is the lightlike basis
of ∆. The distribution generated by vector fields N1, N2..., Nr is denoted by
ltr(ker ϕ∗). Then tr(ker ϕ∗) = ltr(ker ϕ∗) ⊥ S(ker ϕ∗)

⊥. Moreover, we have
the following decomposition

TM = S(Ker ϕ∗) ⊥ (∆⊕ ltr(Ker ϕ∗)) ⊥ S(Kerϕ∗)
⊥. (3)

Let ϕ :M1 →M2 be a Riemannian submersion, then ϕ is called an r-lightlike
submersion if

dim ∆ = dim{(Ker ϕ∗)⊥ ∩ (Ker ϕ∗)} = r,

where 0 < r < min{dim(ker ϕ∗), dim(ker ϕ∗)
⊥}.

The geometry of lightlike submersions is pictured by tensors A and T given
by

AU1U2 = h∇hU1νU2 + ν∇hU1hU2, (4)
TU1

U2 = ν∇νU1
hU2 + h∇νU1

νU2. (5)
Tensors A and T are horizontal and vertical tensors, respectively. Moreover, T
has symmetric property for vertical vector fields U1 and U2, that is, TU1

U2 =
TU2

U1.
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Let M1 and M2 be semi-Riemannian and lightlike manifolds, respectively.
Next, we assume that ϕ : M1 → M2 be a lightlike submersion with lightlike
distribution Ker ϕ∗ on M1. Further, suppose that tr(Ker ϕ∗) is the comple-
mentary distribution to Ker ϕ∗ in M1. Let ĝ and ∇ stands for induced metric
on Ker ϕ∗ of g and Levi-Civita connection on M1, respectively. Using (5),
∀ U1, U2 ∈ Γ(Ker ϕ∗) and V ∈ Γ(Ker ϕ∗)

⊥, we have

∇U1
U2 = ∇̂U1

U2 + TU1
U2, (6)

∇U1
V = TU1

V +∇⊥
U1
V, (7)

where ∇̂U1U2 = ν∇U1U2 and ∇⊥
U1
V = h∇U1V . Here {∇̂U1U2, TU1V } and

{TU1
U2,∇⊥

U1
V } belong to Γ(Ker ϕ∗) and Γ(tr(Ker ϕ∗)), respectively. Let

S(Ker ϕ∗)
⊥ 6= {0}. Denote by L and S the projections of tr(Ker ϕ∗) on

ltr(Ker ϕ∗) and S(Ker ϕ∗)⊥, respectively. Then, from (6) and (7) , we have

∇U1U2 = ∇̂U1U2 + T lU1
U2 + T sU1

U2, (8)
∇U1N = TU1N +∇⊥l

U1
N +D⊥s(U1, N), (9)

∇U1
W = TU1

W +D⊥l(U1,W ) +∇⊥s
U1
W, (10)

∀ U1, U2 ∈ Γ(Ker ϕ∗), V ∈ Γ(S(Ker ϕ∗)
⊥) and N ∈ Γ(ltr(Ker ϕ∗)). Using

(8)-(10), we obtain

g(T sU1
U2,W ) + g(U2, D

⊥l(U1,W )) = −ĝ(U2, TU1W ), (11)
g(D⊥s(U1, N),W ) = −g(N,TU1W ). (12)

For an r-lightlike or co-isotropic submersion ϕ and if ψ : Ker ϕ∗ → S(Ker ϕ∗),
then ∀ U1, U2 ∈ Γ(Ker ϕ∗) and ξ ∈ Γ∆, we put

∇̂U1ψU2 = ∇̂∗
U1
ψU2 + T ∗

U1
ψU2, (13)

∇̂U1
ξ = T ∗

U1
ξ +∇∗⊥

U1
ξ, (14)

where ∇̂∗
U1
ψU2, T

∗
U1
ξ ∈ Γ(S(Ker ϕ∗)) and T ∗

U1
ψU2, ∇∗⊥

U1
ξ ∈ Γ∆.

3. Screen Slant Lightlike Submersions

Lemma 3.1. Let ϕ : M1 → M2 be a 2r-lightlike submersion from an indefinite
Kaehler manifold M1 onto a lightlike manifold M2. Assume that Ker ϕ∗ is a
lightlike distribution on M1. Then S(Ker ϕ∗) is Riemannian.

Proof. Let Ker f∗ be a lightlike distribution of dimension m onM1. Then there
exists

{ξi, Ni, Uα, Za}, i ∈ {1, ..., 2r}, α ∈ {2r + 1, ...,m}, a ∈ {2r + 1, ..., n},

where {ξi}, {Ni} are lightlike basis of ∆, ltr(Ker ϕ∗) and Uα, Za are orthonor-
mal basis of S(Ker ϕ∗), S(Ker ϕ∗)⊥, respectively. With the help of basis
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{ξ1, ..., ξ2r, N1, ..., N2r} of ∆⊕ ltr(Ker ϕ∗), we set up the following orthonormal
basis {U1, ..., U4r}

U1 =
(ξ1 +N1)√

2
, U2 =

(ξ1 −N1)√
2

,

U3 =
(ξ2 +N2)√

2
, U4 =

(ξ2 −N2)√
2

,

... ...

... ...

U4r−1 =
(ξ2r +N2r)√

2
, U4r =

(ξ2r −N2r)√
2

.

Thus, span{ξi, Ni} is a non-degenerate space with constant index 2r, which
enables us to conclude that ∆⊕ ltr(Ker ∗) is non-degenerate with index 2r on
M . Moreover,

index(TM)

= index(∆⊕ ltr(Ker f∗)) + index(S(Ker ϕ∗) ⊥ (S(Ker ϕ∗))
⊥),

implies S(Ker ϕ∗) ⊥ S(Ker ϕ∗)
⊥ has a constant index zero. Hence, S(Ker ϕ∗)

and S(Ker ϕ∗)⊥ are Riemannian distributions. □

Using this lemma, we give the following definition:

Definition 3.2. Let ϕ : M1 → M2 be a lightlike submersion from a real 2m-
dimensional indefinite Kaehler manifoldM1 onto a lightlike manifoldM2. We say
that ϕ is a screen slant lightlike submersion if J∆ = ∆ and screen distribution
S(Ker ϕ∗) is slant.

From the definition it is clear Ker ϕ∗ is invariant (respectively anti invariant)
iff θ = 0 (respectively θ = π

2 ). Thus, a screen slant lightlike submersion is a
natural generalization of invariant and anti-invariant lightlike submersions. If a
screen slant lightlike submersion is neither invariant nor anti-invariant, then it
is called a proper screen slant lightlike submersion.

In the remaining part of this section we consider that Ker ϕ∗ is a 2r-lightlike
distribution of indefinite Kaehler manifold M .

Now, for any U ∈ Γ(S(Ker ϕ∗)), consider
JU = τU + ωU. (15)

Here τU ∈ Γ(Ker ϕ∗) and ωU ∈ Γ(tr(Ker ϕ∗)).

Corollary 3.3. Let ϕ be a screen slant lightlike submersion from an indefinite
Kaehler manifold M1 onto a lightlike manifold M2. Then, ∀ U ∈ Γ(Ker ϕ∗), we
have

(i) U ∈ Γ(S(Ker ϕ∗)) implies ωU ∈ Γ(S(Ker fϕ∗)
⊥),

(ii) U ∈ Γ(∆) implies ωU = 0.
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Proof. Invariance of ∆ with respect to J implies that J (ltr(Ker ϕ∗))
= ltr(Ker ϕ∗), which implies (i). Other assertion is clear from definition 3.2. □

Now, assume that χ and Q are the projection morphisms on the distributions
S(Ker f∗) and ∆, respectively. Then, for any U ∈ Γ(Ker ϕ∗), we put

U = χU +QU, (16)
χU ∈ Γ(S(Ker ϕ∗)) and QU ∈ Γ(∆). From (16), we have

JU = JQU + JχU = τQU + τχU + ωχU, (17)
where

JQU = τQU, ωQU = 0, (18)
and

τϕU ∈ Γ(S(Ker ϕ∗)).

Also, let us decompose S(Ker ϕ∗)⊥ as
S(Ker ϕ∗)

⊥ = ν ⊥ ωχ(S(Ker ϕ∗)). (19)
So, for Z ∈ Γ(S(Ker ϕ∗)

⊥), we write
JZ = CZ + βZ, (20)

Here CZ ∈ Γ(ν) and βZ ∈ Γ(S(Ker ϕ∗)).
From definition (3.2) it is clear that any proper screen slant lightlike submer-

sion must be r-lightlike, that is a proper screen slant lightlike submersion must
not be screen slant isotropic or co-isotropic or totally lightlike submersion. We
follow [6] for the notations used in examples.

Example 3.4. Let R8
0,2,6 and R4

2,0,2 endowed with the metric
g = −(du1)

2 − (du2)
2 + (du3)

2 + (du4)
2 + (du5)

2 + (du6)
2 + (du7)

2 + (du8)
2

and degenerate metric g′ = (dv3)
2+(dv4)

2, where u1, ..., u8 and v1, ..., v4 are the
canonical coordinates on R8 and R4, respectively. Define the map ϕ : (R8, g) →
(R4, g′) as

(u1, ..., u8) 7−→
(
u1 + u3, u2 + u4, (u5 − u7)/

√
2, u8

)
.

Then

Ker ϕ∗ = Span
{
U1 =

∂

∂u1
− ∂

∂x3
, U2 =

∂

∂u2
− ∂

∂x4
,

U3 =
1√
2

( ∂

∂u5
+

∂

∂u7

)
, U4 =

∂

∂u6

}
and

(Ker ϕ∗)
⊥ = Span

{
U1, U2, X =

1√
2

( ∂

∂u5
− ∂

∂u7

)
, Y =

∂

∂u8

}
.

So, ∆ = Span{U1, U2}. By easy computation we can see that JU1 = U2. Thus
∆ is invariant. Further, S(Ker ϕ∗) = Span{U3, U4} is a slant with slant angle
θ =

π

4
. Hence, ϕ is a proper screen slant lightlike submersion.
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In the remaining part of this section we assume that ϕ : (M1, g,J ) → (M2, g
′)

be a 2r-lightlike submersion from an indefinite Kaehler manifold M1 onto a
lightlike manifold M2.
Theorem 3.5. Let ϕ : M1 → M2 be a lightlike submersion and Ker ϕ∗ is a
lightlike distribution of M1. Then ϕ is a screen slant lightlike submersion if and
only if

(i) J (ltr(Ker ϕ∗)) = ltr(Ker ϕ∗),
(ii) For any U ∈ Γ(S(Ker ϕ∗)), there exists a constant λ ∈ [−1, 0], such

that
(χ ◦ τ)2U = λU, (21)

where λ = −cos2θ|S(Ker f∗).
Proof. Lemma (3.1) implies that S(Ker f∗) is a Riemannian. If ϕ is a screen
slant lightlike submersion, then J∆ = ∆. Using (1), (17) and Corollary 3.3, we
have

g(JN,U) = −g(N, τQU)− g(N, τχU)− g(N,ωχU) = 0,

for U ∈ Γ(S(Ker ϕ∗)) and N ∈ Γ(ltr(Ker ϕ∗)). Also, for Z ∈ Γ(S(Ker f∗)
⊥),

using (1) and (20), we derive
g(JN,Z) = −g(N, CZ)− g(N, βZ) = 0.

Further, if JN ∈ Γ(∆), then JJN = J2N = −N ∈ Γ(ltr(Ker ϕ∗)). Therefore,
we arrive at a contradiction, as ∆ is invariant with respect to J . Thus, the proof
of (i) is completed. For the (ii) part, as f is a screen slant lightlike submersion,
there exists a constant angle θ, independent of U ∈ S(Ker f∗) and p ∈M , such
that

cosθ(U) =
g(τϕU,JU)

|τϕU ||JU |
= −g(J τϕU,U),

|τϕU ||JU |
= −g((ϕ ◦ τ)2U,U)

|τϕU ||JU |
. (22)

Also, we have
cosθ(U) =

|τϕU |
|JU |

. (23)

Using, (22) and (23) we get

cos2θ(U) = − ĝ(U, (ϕ ◦ τ)2U)

|U |2
.

As θ(U) is constant, we obtain (ϕ ◦ τ)2U = λU, λ ∈ [−1, 0]. Thus, we have (ii).
Similarly converse part can be obtained. □

Following corollary is the immediate consequence of Theorem 3.5:
Corollary 3.6. If ϕ :M1 →M2 be a lightlike submersion, then

ĝ(τχU1, τχU2) = cos2θ|S(Ker ϕ∗)ĝ(U1, U2), (24)
and

ĝ(ωχU1, ωχU2) = sin2θ|S(Ker ϕ∗)ĝ(U1, U2), (25)
where U1, U2 ∈ Γ(Ker ϕ∗).
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Now, for any U1, U2 ∈ Γ(Ker ϕ∗), using (2), (8), (10) and (17)-(20), we obtain
(∇̂U1

τ)U2 = −TU1
ωχU2 +BT sU1

U2, (26)
J T lU1

U2 = T lU1
JQU2 + T lU1

τχU2 +D⊥l(U1, ωχU2), (27)
(∇U1

ω)U2 = −T sU1
JQU2 − T sU1

τχU2 + CT sU1
U2. (28)

Theorem 3.7. Let ϕ :M1 →M2 be a screen slant lightlike submersion. Then
(i) ∆ is integrable iff T sU1

JU2 = T sJU1
U2, ∀ U1, U2 ∈ Γ(∆).

(ii) S(Ker ϕ∗) is integrable iff
Q(∇̂U1

τχU2 − ∇̂U2
τχU1) = Q(TU2

ωχU1 − TU1
ωχU2),

for any U1, U2 ∈ Γ(S(Ker ϕ∗)).

Proof. Let U1, U2 ∈ Γ∆. From (29) and corollary (3.6), we have ω∇U1
U2 =

T sU1
JU2−CT sU1

U2. Above equation gives T sU1
JU2−T sJU1

U2 = ω[U1, U2], which
implies (i). Also, using (17), (18) and (27) we arrived at ∇̂U1τχU2+TU1ωχU2 =

JQ∇̂U1U2 − τχ∇̂U1U2 + BT sU1
U2, ∀ U1, U2 ∈ Γ(S(Ker ϕ∗)). Then, we have

∇̂U1
τχU2 − ∇̂U2

τχU1 + TU1
ωχU2 − TU2

ωχU1 = JQ[U1, U2] − τχ[U1, U2]. So,
Q(∇̂U1τχU2−∇̂U2τχU1)+Q(TU1ωχU2−TU2ωχU1) = JQ[U1, U2], which implies
(ii). □

Theorem 3.8. Let ϕ : M1 → M2 be a screen slant lightlike submersion. Then
S(Ker ϕ∗) defines a totally geodesic foliation if and only if −J TU1ωχU2 +
TU1ωχτχU2 has no component in the radical distribution ∆, for any U1, U2 ∈
Γ(S(Ker ϕ∗)).

Proof. If U1, U2 ∈ Γ(S(Ker ϕ∗)), N ∈ Γ(ltr(Ker χ∗)), then using (1), (2) and
(8), we have g(∇̂U1

U2, N) = g(∇U1
JU2,JN). Using (9) and (17), last equa-

tion implies g(∇̂U1
U2, N) = g(∇U1

τχU2,JN) + g(TU1
ωχU2,JN). Then, using

(8)-(10) and (17), this equation gives g(∇̂U2U2, N) = g(∇̂U1(χ ◦ τ)2U2, N) +
g(TU1

ωχτχU2, N) + g(TU1
ωχU2,

JN). Then using Theorem 3.5, we arrive at

g(∇̂U1
U2, N)

= −cos2θg(∇̂U1U2, N) + g(TU1ωχτχU2, N) + g(TU1ωχU2,JN).

Thus, we get
(1 + cos2θ)g(∇̂U1

U2, N) = g(TU1
ωχτχU2, N) + g(TU1

ωχU2,JN),

which completes the proof. □

Theorem 3.9. Let ϕ : M1 → M2 be a screen slant lightlike submersion. Then
τ is parallel if and only if ∀ U1 ∈ Γ(Ker ϕ∗), U2, Z ∈ Γ(S(Ker ϕ∗)) and
N ∈ Γ(ltr(Ker ϕ∗)), we have
D⊥s(U1, N) ∈ Γ(ν),
g(T sU1

Z, ωχU2) = ĝ(T sU1
U2, ωχZ).
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Proof. From (27), we have g((∇̂U1
τ)U2, N) = 0, for U2 ∈ Γ(∆), U1 ∈ Γ(Ker ϕ∗)

and N ∈ Γ(ltr(Ker ϕ∗)). Also, for U1, U2 ∈ Γ(S(Ker ϕ∗)), we obtain
g((∇̂U1

τ)U2, N) = −g(TU1
ωχU2, N). Using (12), last equation gives

g((∇̂U1
τ)U2, N) = g(D⊥s(U1, N), ωχU2). (29)

From (1), (15), (16) and (27), we have

ĝ((∇̂U1τ)U2, Z) = −ĝ(TU1ωχU2, Z)− ĝ(T sU1
U2, ωχZ),

for U1, U2 ∈ Γ(Ker ϕ∗) and Z ∈ Γ(S(Ker ϕ∗)). Finally, using (11) above
equation gives

ĝ((∇̂U1
τ)U2, Z) = g(T sU1

Z, ωχU2)− ĝ(T sU1
U2, ωχZ), (30)

for U1, U2 ∈ Γ(Ker ϕ∗) and Z ∈ Γ(S(Kerϕ∗)). Using (29) and (30), we get our
assertion. □

4. Screen Semi-Slant Lightlike Submersions

Lemma 3.1 motivates us to give the following definition:

Definition 4.1. Let M1 be an indefinite Kaehler manifold and M2 be a light-
like manifold. Also, let ϕ : (M1, g,J ) → (M2, g

′) be a 2r-lightlike submersion
such that 2r < dim(Ker ϕ∗). We say that ϕ is a screen semi-slant lightlike sub-
mersion if the lightlike distribution ∆ is invariant with respect to J and screen
distribution S(Ker ϕ∗) contains two non-null orthogonal distributions D1 and
D2 such that S(Ker ϕ∗) = D1 ⊕D2, where D1 is invariant and D2 is slant.

A screen semi-slant lightlike submersion is called proper if D1 6= {0}, D2 6=
{0} and θ 6= π/2. From definition (4.1) following cases may arise:
If D1 = 0, ϕ is a screen-slant lightlike submersion.
If D2 = 0, ϕ is a invariant lightlike submersion.
If D1 = 0 and θ = π/2, ϕ is a anti-invariant lightlike submersion.
If D1 6= 0 and θ = π/2, ϕ is a SCR lightlike submersion.

So, we can say that above defined class of lightlike submersions includes invari-
ant, anti-invariant, screen slant and SCR lightlike submersions as its subcases.

Example 4.2. Let R12
0,2,10 and R6

4,0,2 equipped with the metric

g = −(du1)
2 − (du2)

2 + (du3)
2 + (du4)

2 + (du5)
2 + (du6)

2

+ (du7)
2 + (du8)

2 + (du9)
2 + (du10)

2 + (du11)
2 + (du12)

2,

and degenerate metric g′ = (dv3)
2 + (dv4)

2. Consider the map ϕ : (R12, g) →
(R6, g′) as

(u1, ..., u12) 7−→
(
u1 − x7, u2 − u8,

u3 + u6√
2

, u5, u11, u12

)
.
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Then ∆ = Span
{
ξ1 =

∂

∂u1
+

∂

∂u7
, ξ2 =

∂

∂u2
+

∂

∂u8

}
. Clearly J ξ1 = ξ2, so ∆

is invariant. By easy calculation we can see that

D2 = Span
{ 1√

2

( ∂

∂u3
− ∂

∂u6

)
,
∂

∂u4

}
is slant distribution with slant angle θ = π

4
. Further, we see that

D1 = Span
{ ∂

∂u9
,
∂

∂u10

}
is invariant with respect to J . Hence, ϕ is a proper screen semi-slant lightlike
submersion.

Example 4.3. Let R8
0,2,6 and R4

2,0,2 be endowed with
g = −(du1)

2 − (du2)
2 + (du3)

2 + (du4)
2 + (du5)

2 + (du6)
2 + (du7)

2 + (du8)
2,

and degenerate metric g′ = (dv3)
2 + (dv4)

2. Taking the map f : (R8, g) →
(R4, g′) as (u1, ..., u8) 7−→

(
(u1 − u5)/

√
2, (u2 − u6)/

√
2, u3 + u7, u4 + u8

)
. It

gives

Ker ϕ∗ = Span
{
U1 =

1√
2

( ∂

∂u1
+

∂

∂u5

)
, U2 =

1√
2

( ∂

∂u2

+
∂

∂u6

)
, U3 =

∂

∂u3
− ∂

∂u7
, U4 =

∂

∂u4
− ∂

∂u8

}
,

which implies

(Ker ϕ∗)
⊥ = Span

{
U1, U2, X =

∂

∂u3
+

∂

∂u7
, Y =

∂

∂u4
+

∂

∂u8

}
.

Thus f is a 2-lightlike submersion with ∆ = Span{U1, U2}, which is cleary seen
to be invariant. Since JU3 = U4 we have S(Ker f∗) = D1 = Span{U3, U4} and
D2 = 0. Hence, ϕ is a invariant lightlike submersion.

Example 4.4. Let R8
0,2,6 and R4

2,0,2 be equipped with the metric

g = −(du1)
2 − (du2)

2 + (du3)
2 + (du4)

2 + (du5)
2 + (du6)

2 + (dx7)
2 + (dx8)

2,

and degenerate metric g′ = (dv3)
2 + (dv4)

2, respectively. Taking the map
ϕ : (R8, g) → (R4, g′) as (u1, ..., u8) 7−→

(
u1 − u3, u2 − u4, u6,

u5 − u8
2

)
. Then,

we obtain

Kerf∗ = Span
{
U1 =

∂

∂u1
+

∂

∂u3
, U2 =

∂

∂u2
+

∂

∂u4
,

U3 =
1

2

( ∂

∂u5
+

∂

∂u8

)
, U4 =

∂

∂u7

}
,

and
(Kerf∗)

⊥ = Span
{
U1, U2, X =

1

2

( ∂

∂u5
− ∂

∂u8

)
, Y =

∂

∂u6

}
.
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Then, ∆ = Span{U1, U2}, which is clearly seen to be invariant. Further,
S(Ker ϕ∗) = D2 = Span{X,Y } is slant with angle π

4
. Thus, D1 = 0. Hence ϕ

is a screen slant lightlike submersion.

Example 4.5. Let R12
0,4,8 and R6

4,0,2 be equipped with

g = −(du1)
2 − (du2)

2 − (du3)
2 − (du4)

2 + (du5)
2 + (du6)

2

+ (du7)
2 + (du8)

2 + (du9)
2 + (du10)

2 + (du11)
2 + (du12)

2,

and degenerate metric g′ = (dv5)
2 + (dv6)

2, respectively. Consider the map
ϕ : (R12, g) → (R6, g′), such that

(u1, ..., u12) 7−→
(
u1 − u5, u2 − u6, (u3 + u7)/

√
2, (u4 + u8)/

√
2, u9, u11

)
.

Then, we obtain

Kerf∗ = Span
{
U1 =

∂

∂u1
+

∂

∂u5
, U2 =

∂

∂u2
+

∂

∂u6
, U3 =

1√
2

( ∂

∂u3
− ∂

∂u7

)
,

U4 =
1√
2

( ∂

∂u4
− ∂

∂u8

)
, U5 =

∂

∂u10
, U6 =

∂

∂u12

}
,

and
(Kerf∗)

⊥ = Span
{
U1, U2, U3, U4, X =

∂

∂u9
, Y =

∂

∂u11

}
.

Thus, f is a 4-lightlike submersion with ∆ = Span{U1, U2, U3, U4}. Further, we
can see easily that JU1 = U2 and JU3 = U4. Therefore, ∆ is invariant with
respect to J . Also JU5 = X and JU6 = Y , implies that S(Ker ϕ∗) = D2 =
Span{U5, U6}. Finally, since JD2 = S(Ker ϕ∗)

⊥, ϕ is a anti-invariant lightlike
submersion.

Example 4.6. Let R16
0,2,14 and R8

6,0,2 be equipped with the metric

g = −(du1)
2 − (du2)

2 + (du3)
2 + (du4)

2 + (du5)
2 + (du6)

2

+ (du7)
2 + (du8)

2 + (du9)
2 + (du10)

2 + (du11)
2

+ (du12)
2 + (du13)

2 + (du14)
2 + (du15)

2 + (du16)
2,

and degenerate metric g′ = (dv5)
2 + (dv6)

2, respectively. Consider the map ϕ :
(R16, g) → (R8, g′) as

(u1, ..., u16) 7−→
(
(u1−u3)/

√
3, (u2−u4)/

√
3, u5+u7, u6+u8, u10, u12, u14, u16

)
.

Then, we obtain

Kerϕ∗ = Span
{
U1 =

1√
3

( ∂

∂u1
+

∂

∂u3

)
, U2 =

1√
3

( ∂

∂u2
+

∂

∂u4

)
,

U3 =
∂

∂u5
− ∂

∂u7
, U4 =

∂

∂u6
− ∂

∂u8
,
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U5 =
∂

∂u9
, U6 =

∂

∂u11
, U7 =

∂

∂u13
, U8 =

∂

∂u15

}
,

and

(Kerϕ∗)
⊥ = Span

{
U1, U2, X1 =

∂

∂u5
+

∂

∂u7
, X2 =

∂

∂u6
+

∂

∂u8
,

X3 =
∂

∂u10
, X4 =

∂

∂u12
, X5 =

∂

∂u14
, X6 =

∂

∂u16

}
,

It follows that ∆ = Span{U1, U2}, which is clearly invariant. Now, as JU3 =
U4, therefore D1 = Span{U3, U4} is an invariant distribution. Further, since
JU5 = X3, JU6 = X4, JU7 = X5 and JU8 = X6, we conclude that JD2 =
S(Ker ϕ∗)

⊥. Hence, ϕ is a proper-SCR lightlike submersion.
Now, for all U ∈ Γ(Ker ϕ∗), we write

JU = χU + FU.

Here χU (resp. FU) is tangential (resp. normal) component of JU . Next, we
denote the projections ofKer ϕ∗ on∆, D1 andD2 by χ1, χ2 and χ3, respectively.
Then, U = χ1U +χ2U +χ3U, for U ∈ Γ(Ker ϕ∗), which implies JU = Jχ1U +
Jχ2U + Jχ3U. Then,

JU = Jχ1U + Jχ2U + ξχ3U + Fχ3U, (31)
where ξχ3U (resp. Fχ3U) denotes the tangential (resp. transversal) component
of Jϕ3U . So, we have Jχ1U ∈ Γ(∆), Jχ2U ∈ Γ(D1), ξχ3U ∈ Γ(D2) and
Fχ3U ∈ Γ(S(Ker ϕ∗)

⊥). In the same way, denote the projections of tr(Ker ϕ∗)
on ltr(Ker ϕ∗) and S(Ker ϕ∗)

⊥ by Q1 and Q2, respectively. So, ∀ W ∈
Γ(tr(Ker ϕ∗)), we put W = Q1W +Q2W, which gives JW = JQ1W + JQ2W.
Then, we have

JW = JQ1W +BQ2W + CQ2W, (32)
where BQ2W (resp. CQ2W ) denotes the tangential (resp. transversal) compo-
nent of JQ2W . Thus, we have JQ1W ∈ Γ(ltr(Ker f∗)), BQ2W ∈ Γ(D2) and
CQ2W ∈ Γ(S(Ker ϕ∗)

⊥). Using (2), (9), (11), (31) and (32) and identifying
the components of ∆, D1, D2, ltr(Ker ϕ∗) and S(Ker ϕ∗)⊥, we get

χ1(∇̂UJχ1V ) + χ1(∇̂UJχ2V ) + χ1(∇̂Uξχ3V )

= −χ1(TUFχ3V ) + Jχ1∇̂UV, (33)

χ2(∇̂UJχ1V ) + χ2(∇̂UJχ2V ) + χ2(∇̂Uξχ3V )

= −χ2(TUFχ3V ) + Jχ2∇̂UV, (34)

χ3(∇̂UJχ1V ) + χ3(∇̂UJχ2V ) + χ3(∇̂Uξχ3V )

= −χ3(TUFχ3V ) + ξχ3∇̂UV +B(T sUV ), (35)

T lUJχ1V + T lUJχ2V + T lUξχ3V = J T lUV −D⊥l(U,Fχ3V ), (36)
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T sUJχ1V + T sUJχ2V + T sUξχ3V = CT sUV −∇⊥s
U Fχ3V + Fχ3∇̂UV. (37)

Theorem 4.7. Let ϕ be a 2r-lightlike submersion from an indefinite Kaehler
manifold M1 onto a lightlike manifold M2. Then, ϕ is a screen semi-slant
lightlike submersion if and only if

(i) J (ltr(Ker ϕ∗)) = ltr(Ker ϕ∗) and J (D1) = D1,
(ii) ∃ a constant λ ∈ [0, 1), in such a way, that (χ3 ◦ ξ)2U = −λU, ∀U ∈

Γ(D2), where D1 and D2 are orthogonal distributions, such that S(Ker ϕ∗)
= D1 ⊕D2 and λ = cos2θ, θ is a slant angle of D2.

Proof. Using (1) and (31), we get
g(JN,U) = −g(N,JU) = −g(N,Jχ1U + Jχ2U + ξχ3U + Fχ3U) = 0,

for any N ∈ Γ(ltr(Ker ϕ∗)) and U ∈ Γ(S(Ker ϕ∗)). Therefore JN does not
belong to S(Ker ϕ∗). Now, if W ∈ Γ(S(Ker ϕ∗)

⊥), using (1) and (32), we
derive

g(JN,W ) = −g(N,JW ) = −g(N,BW + CW ) = 0,

which implies that JN does not belongs to Γ(S(Ker ϕ∗)⊥). Also, if JN ∈ Γ(∆),
then J (JN) = J 2N = −N ∈ Γ(ltr(Ker ϕ∗)), which is absurd as ∆ is invariant
with respect to J . Thus ltr(Ker ϕ∗) is invariant with respect to J . Now, if
U ∈ Γ(D2), we get

cos(θ)(U) =
g(JU, ξχ3(U)

|J (U)||ξχ3(U)|
= −g(U,J ξχ3U)

|JU ||ξχ3U |
= −g(U, (χ3 ◦ ξ)2U)

|JU ||ξχ3U |
, (38)

where θ ia constant angle independent of point p ∈M1. Moreover,

cos(θ)(U) =
|ξχ3(U)|
|J (U)|

. (39)

Using (38) and (39), we obtain

cos2θ(U) = − ĝ(U, (χ3 ◦ ξ)2U)

|U |2
.

Now, since θ(U) is constant, we have (χ3 ◦ ξ)2U = −λU, λ ∈ [0, 1), where
λ = cos2θ. The converse part can be proved in a similar way. □

Theorem 4.8. Let ϕ : M1 → M2 be a screen semi-slant lightlike submersion
from an indefinite Kaehler manifold M1 onto a lightlike manifold M2. Then, the
null distribution ∆ is integrable if and only if ∀ U, V ∈ Γ(∆), we have

(i) χ2(∇̂UJχ1V ) = χ2(∇̂V Jχ1U),
(ii) χ3(∇̂UJχ1V ) = χ3(∇̂V Jχ1U),
(iii) T sUJχ1V = T sV Jχ1U .

Proof. Let U, V ∈ Γ(∆). From (34), we have χ2(∇̂UJχ1V ) = Jχ2∇̂UV. It
follows that

χ2(∇̂UJχ1V )− χ2(∇̂V Jχ1U) = Jχ2[U, V ]. (40)
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Finally, in view of (35), we have χ3(∇̂UJχ1V ) = ψχ3∇̂UV + BT sUV, which
implies

χ3(∇̂UJχ1V )− χ3(∇̂V Jχ1U) = ξχ3[U, V ]. (41)
Using (37), we obtain T sUJχ1V = CT sUV + Fχ3∇̂UV, which gives

T sUJχ1V − T sV Jχ1U = Fχ3[U, V ]. (42)
Using (40), (41) and (42), the proof follows. □

Theorem 4.9. Let ϕ : M1 → M2 be a screen semi-slant lightlike submersion
from an indefinite Kaehler manifold M1 onto a lightlike manifold M2. Then, the
non-null distribution D1 is integrable if and only if ∀ U, V ∈ Γ(D1), we have

(i) T sUJχ2V = T sV Jχ2U ,
(ii) χ1(∇̂UJχ2V ) = χ1(∇̂V Jχ2U),
(iii) χ3(∇̂UJχ2V ) = χ3(∇̂V Jχ2U).

Proof. Let U, V ∈ Γ(D1). Now, from (33), we have χ1(∇̂UJϕ2V ) = Jϕ1∇̂UV,
which gives

χ1(∇̂UJχ2V )− χ1(∇̂V Jχ2U) = Jχ1[U, V ]. (43)
In view of (35), we have χ3(∇̂UJχ2V ) = ξχ3∇̂UV +BT sUV. It follows that

χ3(∇̂UJχ2V )− χ3(∇̂V Jχ2U) = ξχ3[U, V ]. (44)
Using (37), we obtain T sUJχ2V = CT sUV + Fχ3∇̂UV. It gives

T sUJχ2V − T sV Jχ2U = Fχ3[U, V ]. (45)
Thus, the proof is completed by using (43), (44) and (45). □

Theorem 4.10. Let ϕ : M1 → M2 be a screen semi-slant lightlike submersion
from an indefinite Kaehler manifold M1 onto a lightlike manifold M2. Then the
non-null distribution D2 is integrable if and only if for any U, V ∈ Γ(D2), we
have
χ1(∇̂Uξχ3V − ∇̂V ξχ3U) = χ1(TV Fχ3U − TUFχ3V ),

χ2(∇̂Uξχ3V − ∇̂V ξχ3U) = χ2(TV Fχ3U − TUFχ3V ).

Proof. Let U, V ∈ Γ(D2). Using (33), we have χ1(∇̂Uξχ3V ) + χ1(TUFχ3V ) =

Jχ1∇̂UV, which implies
χ1(∇̂Uξχ3V )−χ1(∇̂V ξχ3U)+χ1(TUFχ3V )−χ1(TV Fχ3U) = Jχ1[U, V ]. (46)
Using (34), we drive χ2(∇̂Uξχ3V ) + χ2(TUFχ3V ) = Jχ2∇̂UV, which gives
χ2(∇̂Uξχ3V )−χ2(∇̂V ξχ3U)+χ2(TUFχ3V )−χ2(TV Fχ3U) = Jχ2[U, V ]. (47)
Thus, the proof follows from (46) and (47). □

Theorem 4.11. Let ϕ : M1 → M2 be a screen semi-slant lightlike submersion
from an indefinite Kaehler manifold M1 onto a lightlike manifold M2. Then,
induced connection ∇̂ on S(Ker ϕ∗) is a metric connection if and only if BT sV ξ =
0 and T ∗

V ξ = 0 on Γ(Ker ϕ∗), ∀ V ∈ Γ(Ker ϕ∗) and ξ ∈ Γ(∆).
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Proof. Connection ∇̂ on S(Ker ϕ∗) is a metric connection if and only if ∆

is a parallel distribution with respect to ∇̂. Using (2), (8) and (14), we obtain
∇V J ξ = J ∇̂∗⊥

V ξ+J T ∗
V ξ+J T lV ξ+J T sV ξ, for any V ∈ Γ(Ker ϕ∗) and ξ ∈ Γ(∆).

Comparing the tangential components, we get ∇̂V J ξ = J ∇̂∗⊥
V ξ+J T ∗

ξ V +BT sV ξ,
which completes the proof. □
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