• Title/Summary/Keyword: Light-weight Structures

Search Result 285, Processing Time 0.029 seconds

Settlement Behavior of Wing-wall type Foundation on Soft Grounds (연약지반에서 날개벽 기초의 침하량 산정)

  • Jang, Si-Kyung;Lee, Kwang-Yeol;Hwang, Jae-Hong;Chung, Chin-Gyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1164-1169
    • /
    • 2009
  • Piled raft foundation is commonly used for structure on deep soft soil deposit rather than end bearing piles to control differential settlement. However, it is still expensive for light weight structures. Wing-wall type foundation has been successfully applied to reduce average settlement for light weight structure. This study will further investigate this type of foundation using bench scale experiments on clay and sand. Numerical analysis and approach method are used to verify load settlement curve of wing-wall foundation on experimentally study. Furthermore, normalized settlement curves are applied to define prediction of settlement on wing-wall foundation. In the result settlement on wing-wall foundation can be effectively done by increasing the length of wall instead of number of walls and equation for calculating average settlement can be derived using normalized load settlement curve.

  • PDF

Production Processes of Porous Metals and Their Applications (다공질 금속의 제조와 응용)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.155-164
    • /
    • 2015
  • Porous metals are called as a new material of 21th century because they show not only extremely low density, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Since the late in the 1990's, considerable progress has been made in the production technologies of many kinds of porous metals such as aluminum, titanium, nickel, copper, stainless steel, etc. The commercial applications of porous metals have been increased in the field of light weight structures, sound absorption, mechanical damping, bio-materials, thermal management for heat exchanger and heat sink. Especially, the porous metals are promising in automotive applications for light-weighting body sheets and various structural components due to the good relation between weight and stiffness. This paper reviews the recent progress of production techniques using molten metal bubbling, metal foaming, gas expansion, hollow sphere structure, unidirectional solidification, etc, which have been commercialized or under developing, and finally introduces several case studies on the potential applications of porous metals in the area of heat sink, automotive pannel, cathod for Ni-MH battery, golf putter and medical implant.

Study on energy dissipation mechanism of cross-shaped BRB with built-up angle steel

  • Yanmin Yang;Ying Xiong;Peng Wang;Xiangkun Meng;Tianyuan Cai
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.113-123
    • /
    • 2023
  • A novel type of buckling restrained brace with built-up angle steel was developed. The core segment was formed by welding angle steel, and the middle section was reduced by cutting technology to solve the problem that the end of BRB was easy to buckle. The experimental program has been undertaken to study the performance of BRBs with different unbonded materials (silica gel, kraft paper) and different filler materials (ordinary concrete, full light-weight concrete). Four specimens were designed and fabricated for low cycle reciprocating load tests to simulate horizontal seismic action. The failure mode, hysteretic curves, tension-compression unbalance coefficient and other mechanical parameters were compared and analyzed. The finite element software ABAQUS was used to conduct numerical simulation, and the simulation results were compared with the experimental phenomena. The test results indicated that the hysteretic curve of each specimen was plump. Sustaining cumulative strains of each specimen was greater than the minimum value of 200 required by the code, which indicated the ductility of BRB was relatively good. The energy dissipation coefficient of the specimen with silica gel as unbonded material was about 13% higher than that with kraft paper. The experimental results were in good agreement with the simulation results.

Relationship between Environmental Conditions and the Growth of Ginseng Plant in Field I. Productive Structures as Affected by Planting Positions and Ages (인삼포의 환경조건과 인삼생육과의 관계 제1보 재식위치별 생산구조)

  • 김종만;이성식;천성용;천성기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.94-98
    • /
    • 1982
  • To understand the growth pattern of ginseng plant under shading, the vertical distribution of leaf area, leaf area index (LAI) and specific leaf weight (SLW) and changes in light intensity as affected by planting position were investigated in 3 to 5 years old ginseng plant populations. Light intensity was vertically lowest at about 10cm above the ground and became low at the rear planting position in 3-year-old population. When culturing bed (96cm in width) were divided into three parts at intervals of 32cm from front to rear, the leaf area in 3-year-old population was largest in middle 1/3 part of planting bed. Light intensity affected the SLW positively, but LAI showed no distinct difference among planting positions. The light environment of 4-year-old population was worse than that of 3-year-old population and leaf area and LAI differed greatly among planting positions. In 5-year-old population, leaf dry weight and leaf area of furrow part (that is, the amount of leaves protruded from the plants which were planted in 1st, 2nd or 3rd lines into the furrow) increased. The dry weights of leaves and stem increased considerably as plant became aged, and were distributed mainly in upper layer.

  • PDF

An Experimental Study on Fire Resistance Performance Test of Non-loadbearing Ceiling Systems (비내력 천장구조 내화성능평가에 대한 실험적 연구)

  • Choi, Dong-Ho;Kim, Dae-Hoi;Park, Soo-Young
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.22-27
    • /
    • 2011
  • Fire resistance ceiling system is the structure of which the ceiling installed under the slave of the structure has the fire resistance performance. Because of having the fire resistance performance, fire resistive coatings on steel beams can be reduced and large span structures can be constructed. So, it have advantages of convenience for construction, shorten for construction time and cost reducing. In foreign country, it is general that one system consisting of slave and ceiling is constructed as a fire resistance system. But in Korea, there are no fire resistance ceiling systems thus economical efficiency due to being high-rise and light-weight of structures is not secured. Therefore research and development of nominal fire resistance ceiling systems is necessary. On this study, fire resistances of standard non-loadbearing ceiling systems were assessed and basic informations for developing the fire resistance non-loadbearing ceiling systems were presented.

Fracture Mechanisms of Cold-Rolled Light-Weight Steel Plates Containing Different Carbon Content (탄소함량이 다른 경량철강판의 냉간 압연에 의한 파괴기구)

  • Han, Seung Youb;Shin, Sang Yong;Lee, Sunghak;Kim, Nack J.;Kwak, Jai-Hyun;Chin, Kwang-Geun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.377-386
    • /
    • 2010
  • An investigation was conducted into the effects of $\kappa$-carbides on the cracking phenomenon, which often occurred in cold-rolled light-weight steel plates. Three kinds of steels were fabricated by varying the C content, and their microstructures and tensile properties were investigated. In the two steels that contained a high carbon content, the band structures of ferrites and $\kappa$-carbides that were severely elongated along the rolling direction were well developed, whereas continuous arrays of $\kappa$-carbides were formed in the steel that contained a low carbon content. Detailed microstructural analyses of the deformed region beneath the tensile fracture surface showed that the cracks initiated at arrays of $\kappa$-carbides or $\kappa$-carbides formed interfaces between the band structures, which initiated cleavage fractures in the ferrite bands, while the bands populated with a number of $\kappa$-carbides did not play an important role in propagating the cracks. Thus, the minimization of interfacial $\kappa$-carbides or $\kappa$-carbide arrays by increasing the carbon content was essential for preventing cracking from occurring during cold rolling.

Morphology and Crystallization in Mixtures of Poly(methyl methacrylate)-Poly(pentafluorostyrene)-Poly(methyl methacrylate) Triblock Copolymer and Poly(vinylidene fluoride)

  • Kim, Geon-Seok;Kang, Min-Sung;Choi, Mi-Ju;Kwon, Yong-Ku;Lee, Kwang-Hee
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.757-762
    • /
    • 2009
  • The micro domain structures and crystallization behavior of the binary blends of poly(methyl methacrylate)-b-poly(pentafluorostyrene)-b-poly(methyl methacrylate) (PMMA-PPFS-PMMA) triblock copolymer with a low molecular weight poly(vinylidene fluoride) (PVDF) were investigated by small-angle X-ray scattering (SAXS), small-angle light scattering (SALS), transmission electron microscopy (TEM), optical microscopy, and differential scanning calorimetry (DSC). A symmetric, PMMA-PPFS-PMMA triblock copolymer with a PPFS weight fraction of 33% was blended with PVDF in N,N-dimethylacetamide (DMAc). In the wide range of PVDF concentration between 10.0 and 30.0 wt%, PVDF was completely incorporated within the PMMA micro domains of PMMA-PPFS-PMMA without further phase separation on a micrometer scale. The addition of PVDF altered the phase morphology of PMMA-PPFS-PMMA from well-defined lamellar to disordered. The crystallization of PVDF significantly disturbed the domain structure of PMMA-PPFS-PMMA in the blends, resulting in a poorly-ordered morphology. PVDF displayed unique crystallization behavior as a result of the space constraints imposed by the domain structure of PMMA-PPFS-PMMA. The pre-existing microdomain structures restricted the lamellar orientation and favored a random arrangement of lamellar crystallites.

Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation (보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능)

  • Balaguru, P.N.;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

The Crack Control of Fiber Net Reinforced RC Slab (섬유망을 이용한 RC슬래브의 균열제어)

  • Bae, Ju-Seong;Kim, Kyoung-Soo;Kim, Nam-Wook;Kim, Chul-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.225-231
    • /
    • 2002
  • Severe cracks on Reinforced Concrete (RC) structures caused by structural displacement can be often one of the main reasons for the degradation of tensile and flexural rigidities of RC structures and for the deterioration of durability and serviceability of RC structures through accelerated steel corrosion. These combined factors adversely affect the performance of RC concrete, leading to shortened life time of RC structures. In consideration of these problems, we conducted 3 point bending experiments by employing three different types of concrete specimens: fiber-net reinforced concrete (FNRC), polypropylene-fiber reinforced concrete (PFRC), and plain concrete (PC). FNRC is well known for its strong corrosion resistance, light self-weight, and excellent tensile strength, while PFRC is known to be effective in crack control. FNRC was found to have the best first and final crack resistances followed by PFRC and PC, as evidenced by the highest initial crack load and the smallest final crack width, respectively. The FNRC specimens with various tensile strength of fiber net exhibited greater ultimate strengths than those for PFRC and PC. Furthermore, the crack widths of FNRC specimens were smaller than those calculated by the crack-width estimation equation of the KCI and ACI code. Therefore, we conclude that fiber net reinforcement is effective not only on crack control, but also on loading share.

On the Development of Authoritative Representations of Torpedo Systems for Engagement Level Simulation (교전수준 어뢰체계 표준모델 개발 방안 연구)

  • Shin, Ji-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.19-28
    • /
    • 2007
  • We considered the authoritative representations of torpedo systems that was the engagement level model to develop system specifications and to analyze operational requirements on concept design phase. The Work Breakdown Structure(WBS) of models was defined about authoritative representations of the torpedo systems. The communication of information among each subsystems and input/output parameters were defined. In the heavy weight and light weight torpedo model, presetter, underwater maneuver, war head, sonar, guidance and control, propulsion subsystem modeling were developed for heavy-weight and the light-weight torpedo systems. The authoritative representations of torpedo systems have similar structures with those of the engineering level models and could be verified via engagement level simulations according to the V&V process in the future.

  • PDF