• Title/Summary/Keyword: Light-weight Structures

Search Result 285, Processing Time 0.028 seconds

Experiment on Flexural Analysis of RC Beams Strengthened with Composite Material Panel (복합재료 패널로 보강된 철근 콘크리트 보의 휨 실험)

  • Kim, Jin-Man;Jung, Mi-Roo;Lee, Jae-Hong;Yoon, Kwang-Sup
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.117-126
    • /
    • 2010
  • Experiment on flexural analysis of RC beams strengthened with composite material panel is presented. Recently, the strengthening of reinforced concrete structures using advanced fiber reinforced plastic (FRP) composites, and in particular the behavior of FRP-reinforced concrete structure is topic that has become very popular because of good corrosion resistance and easy for site handling due to their light weight. In this study, an efficient computational analysis using ABAQUS to predict the ultimate moment capacity of reinforced concrete beams strengthened with FRP is presented. Test parameters in this study are the shape of fiber arrangement (LT, DB, DBT) and the number of carbon fiber sheets (2ply, 3ply). When comparing with results of the analytical model, results of the experiments show similar values. Furthermore, reinforced concrete beam with FRP obtains improved effects for ultimate strength.

  • PDF

STUDY ON A EFFECTIVE THERMAL CONDUCTIVITY OF THE CFRP COMPOSITE STRUCTURE BY A SIMPLIFIED MODEL (모델 단순화에 의한 CFRP 복합 구조물의 유효 열전도율 추출 방법 연구)

  • Kim, D.G.;Han, K.I.;Choi, J.H.;Lee, J.J.;Kim, T.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.63-69
    • /
    • 2015
  • The thermal balance test in vacuum chamber for satellite structures is an essential step in the process of satellite development. However, it is technically and economically difficult to fully replicate the space environment by using the vacuum chamber. To overcome these limitations, the thermal analysis through a computer simulation technique has been conducted. The CFRP composite material has attracted attention as satellite structures since it has advantages of excellent mechanical properties and light weight. However, the nonuniform nature of the thermal conductivity of the CFRP structure should be noted at the step of thermal analysis of the satellite. Two different approaches are studied for the thermal analyses; a detailed numerical modeling and a simplified model expressed by an effective thermal conductivity. In this paper, the effective thermal conductivities of the CFRP composite structures are extracted from the detailed numerical results to provide a practical thermal design data for the satellite fabricated with the CFRP composite structure. Calculation results of the surface temperature and the thermal conductivities along x, y, z directions show fairly good agreements between the detailed modeling and the simplified model for all the cases studied here.

Flame Resistance Performance of Glass Fiber and Polyester Fiber Architectural Membranes (건축용 유리섬유 및 폴리에스테르섬유 막재의 난연특성)

  • Kim, JiHyeon;Song, Hun
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • Membrane structures can be used to create diverse lightweight structural forms using ductile membranes made of coated fabric. Using membrane structures, it is possible to construct large covered spaces relatively quickly and economically, and hence, they are being applied within various applications. The structures are light-weight, transparent, flexible in their application, economical and easy to maintain, and as such, their usage is being expanded. However, despite their prevalence, the standard for membrane material performance in terms of fire safety is still inadequate, and the development of membrane materials with excellent flame resistance performance is being demanded. This study determined flame resistance performance of architectural membranes, including PTFE, PVDF, PVF and ETFE film membranes, through flammability testing and incombustibility testing.

An Experimental Study for the Strength Variations of High-strength Lightweight Concrete According to Grain-size of Artificial Lightweight Aggregate (인공경량골재의 입도에 따른 고강도 경량콘크리트의 강도변화에 대한 실험적 연구)

  • Kim, Sung Chil;Park, Ki Chan;Choi, Hyoung Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.209-217
    • /
    • 2011
  • In recent days, while taller and more massive structures such as huge bridges and super skyscrapers have been welcomed, the structural stabilization in design and construction have been gradually limited due to the major weakness of current concrete which is relatively heavier when compared with its strength. To improve the weakness of the current concrete, The lightweight concrete with light weight and high strength should be used; however, not many researchers in Korea have studied on the lightweight concrete. Generally, artificial lightweight aggregate produced through high-temperature-plasticization has a possibility of its body-expansion with many bubbles. Therefore, depending on the size of aggregate, the effects of bubbles on the specific weight and strength of the lightweight concrete should be studied. In this study, considering grain-size, the mix design of the artificial lightweight aggregate produced through the high-temperature-plasticization and the body-expansion of waste and clay from the fire power plant in Korea was conducted. The experiment to analyze the variation in specific weight and strength of the lightweight concrete was followed. From these experiments, the optimized grain-size ratio of the artificial lightweight aggregate for the enhancement of high-strength from the lightweight concrete was revealed.

An Optimum Design of Sandwich Panel at Fixed Edges (고정지지된 Sandwich Panel의 최적설계에 관한 연구)

  • K.S. Kim;I.T. Kim;Y.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.115-122
    • /
    • 1992
  • A sandwich element is a special Hybrid structural form of the composite construction, which is consisted of three main parts : thin, stiff and relatively high density faces separated by a thick, light, and weaker core material. In a sandwich construction, the shear deformation of the faces. Therefore, in the calculation of the bending stiffness, the shear effect should be included. In this paper, the minimum weight is selected as an object function, as the weight critical structures are usually composed of these kind of construction. To obtain the minimum weight of sandwich panel, the principle of minimum potential energy is used and as for the design constraints, the allowable bending stress of face material, the allowable shear stress of core material, the allowable value of panel deflection and the wrinkling stress of faces are adopted, as well as the different boundary conditions. For the engineering purpose of sandwich panel design, the results are tabulated, which are calculated by using the nonlinear optimization technique SUMT.

  • PDF

Research on simple measurement method of floor finishing materials to predict lightweight floor impact noise reduction performance in apartment houses (공동주택 경량 바닥충격음 저감성능 예측을 위한 바닥마감재 간이측정 방법 연구)

  • Min-Woo Kang;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.594-602
    • /
    • 2023
  • To date, research on heavy floor impact noise has mainly been conducted. The reason is that in the case of lightweight floor impact noise, sufficient performance could be secured with only the floating floor structure and floor finishing materials. In the case of heavy floor impact noise in a floating floor structure, the reduction performance can be predicted to some extent by measuring the dynamic elasticity of the floor cushioning material. However, with the recent introduction of the post-measurement system, various floor structures are being developed. In particular, many non-floating floor structures that do not use cushioning materials are being developed. In floor structures where cushioning materials are not used, the finishing material will have a significant impact on lightweight floor impact noise. However, research on floor finishing materials is currently lacking. In this study, as a basic research on the development of various floor finishing materials for effective reduction of lightweight floor impact noise, various materials used as floor finishing materials for apartment complexes were selected, the sound insulation performance of lightweight floor impact noise was measured in an actual laboratory, and vibration characteristics were identified through simple experiments. The purpose was to confirm the predictability of light floor impact noise.

A study on the design for the road bike frame made by carbon fiber materials (나노탄소섬유소재(Carbon fiber)를 활용한 로드형 자전거에서의 프레임 디자인 개발에 관한 연구)

  • Kim, Ki-Tae;Kim, Hyun-Sung;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.178-185
    • /
    • 2017
  • Carbon fiber frames are actively developed for developing carbon fiber frames as the material of the next generation of bicycle frames, and are currently being developed with carbon fiber frames, hardness, shock absorption, light intensity, and strength. The carbon fiber bike models require a premium, differentiated design concept, which is essential to the development of a conceptual and differentiated design, requiring the development of essential structural structures, safety and refinement, and more of their own identity. In this study, a personal and unified image was derived from the research of the needs of consumers and image analysis process and then in the practical design work, the road bike bicycle frame design was proposed targeting the frame on the basis of carbon fiber materials.

An Experimental Study on the Serviceability Evaluation with Vibration Test of RC Slab (진동실험을 통한 슬래브구조물의 사용성 평가)

  • Kim, Dongbaek;Ryu, Gichan
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.312-318
    • /
    • 2014
  • Recent building structures are superior in its ability but they are light weight and long span, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However, recent high-rise apartment slabs are mostly light and long, the serviceability of RC slabs due to vibration could be a problem. In this paper, a basic investigation about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted for natural frequency of building, for example load of two persons walking and one person leaping etc.

Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates (CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가)

  • 조효남;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.