DOI QR코드

DOI QR Code

Flame Resistance Performance of Glass Fiber and Polyester Fiber Architectural Membranes

건축용 유리섬유 및 폴리에스테르섬유 막재의 난연특성

  • Kim, JiHyeon (Eco & Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Song, Hun (Eco & Composite Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 김지현 (한국세라믹기술원 에코복합소재센터) ;
  • 송훈 (한국세라믹기술원 에코복합소재센터)
  • Received : 2015.11.06
  • Accepted : 2016.01.20
  • Published : 2016.02.29

Abstract

Membrane structures can be used to create diverse lightweight structural forms using ductile membranes made of coated fabric. Using membrane structures, it is possible to construct large covered spaces relatively quickly and economically, and hence, they are being applied within various applications. The structures are light-weight, transparent, flexible in their application, economical and easy to maintain, and as such, their usage is being expanded. However, despite their prevalence, the standard for membrane material performance in terms of fire safety is still inadequate, and the development of membrane materials with excellent flame resistance performance is being demanded. This study determined flame resistance performance of architectural membranes, including PTFE, PVDF, PVF and ETFE film membranes, through flammability testing and incombustibility testing.

막구조물은 코팅된 직물을 주재료로 하는 구조로 연성을 가진 막을 사용하여 외부하중에 대해 안정된 형태를 유지하는 구조물을 말한다. 막에 의한 구조시스템은 대공간 시공이 가능하고 가벼우며 빛을 투과할 수 있는 등 자원 및 관리비용 절감 면에서 많은 이점을 가지고 있어 다양한 용도의 구조물에 적용되며 그 사용용도가 점차 확대되고 있는 실정이다. 하지만 막구조 건축물 및 막재가 다양해짐에도 불구하고 화재안전을 고려한 막재의 성능에 대한 기준은 미비한 실정이며 다양한 용도에 적합한 난연성능이 우수한 막재의 개발이 요구되고 있다. 따라서 본 연구에서는 시판되는 건축용 막재인 PTFE, PVDF와 PVF, ETFE 필름 막재의 방염 및 난연성능 시험 등을 통해 건축용 막재의 난연특성을 확인하였다.

Keywords

References

  1. Korean association for spatial structures, "Design Code and Commentary for Membrane Structures", Korea (2010).
  2. S. D. Kim, "The Present and Future of Architectural Fabrics", Architectural Institute of Korea, Vol. 49, No. 10, pp. 49-56 (2005).
  3. International code council, "International Building Code" (2012).
  4. NFPA 701 Standard Methods of Fire Tests for Flame Propagation of Textiles and Films.
  5. Y. Y. Zhang, G. Q. Zhu and H. Yang, "Experimental Research on Combustion Characteristics of Air-supported Membrane Materials", Procedia Engineering, Vol. 52, pp. 624-629 (2013). https://doi.org/10.1016/j.proeng.2013.02.196
  6. Membrane Structures Association of Japan, "Technical Criteria of Membrane Structures and Membrane Materials", Japan (2003).
  7. MSAJ/M-03:2003, "Test Methods for Membrane Materials (Coated Fabrics)-Qualities and Performances", Membrane Structures Association of Japan.
  8. K. G. Park and S. K. Yun, "Tearing Strength Test of Architectural Membrane", Journal of the Korean Association for Spatial Structures, Vol. 7, No. 6, pp. 5-11 (2007).
  9. I. Lee, W. S. Choi, K. G. Park and T. J. Kwun, "Friction and Wear Test of Architectural Membrane", Journal of the Korean Association for Spatial Structures, Vol. 8, No. 5, pp. 14-18 (2008).
  10. S. Y. Sur, M. H. Jang, K. G. Park and S. D. Kim, "Study for Tensile Properties of Architectural Membran with Different Yarn", Journal of the Korean Association for Spatial Structures, Vol. 10, No. 3, pp. 41-48 (2010).
  11. KS K 0521 Textiles-Tensile properties of fabrics-Determination of maximum force and elongation at maximum force using the strip method, Korea Standard Association (2011).
  12. KS F 2819 Testing method for incombustibility of thin materials for buildings, Korea Standard Association (2005).
  13. ISO 5660-1, Reaction to Fire, Part 1. Rate of Heat Release from Building Products (Cone Calorimeter), Genever (1993).
  14. KS F ISO 5660-1 Fire Tests for Combustion (Cone Calorimeter Test), Korea Standard Association (2009).
  15. K. W. Lee and K. E. Kim, "Fire Characteristics of Plastic Insulating Materials from Cone Calorimeter Test", Fire Science and Engineering, Vol. 17, No. 1, pp. 76-83 (2003).
  16. K. C. Tsai, "Orientation Effect on Cone Calorimeter Test Results to Assess Fire Hazard of Materials", Journal of Hazardous Materials, Vol. 172, pp. 763-772 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.061
  17. J. Y. Kim, "Mechanical Properties of ETFE Membrane (II)", Proceedings of KASS Symposium-Spring 2011, Journal of the Korean Association for Spatial Structures, Vol. 8, No. 1, pp. 87-90 (2011).
  18. K. W. Lee, K. E. Kim and D. H. Lee, "Combustion Characteristics of Fiber Reinforced Plastic by Cone Calorimeter", Proceedings of 2009 Spring Annual Conference, Korean Institute of Fire Science and Engineering, Vol. 18, No. 2, pp. 68-72 (2004).
  19. Y. T. Kim, H. R. Kim, Y. J. Park and H. P. Lee, "Thermal Characteristics of Car Interior Materials using Cone Calorimeter", Fire Science and Engineering, pp. 567-563 (2009).

Cited by

  1. Flame Resistance Performance of Architectural Membrane According to Woven Fabrics and Coating Materials vol.16, pp.6, 2016, https://doi.org/10.5345/JKIBC.2016.16.6.545