• 제목/요약/키워드: Light scattering method

검색결과 329건 처리시간 0.021초

HPLC-ELSD를 이용한 발효유 제품 중의 Isomaltooligosaccharides 분석법 개발 (Determination of Isomaltooligosaccharides in Yoghurts by Using HPLC-ELSD)

  • 고진혁;이문석;곽병만;안장혁;박종수;권중호
    • 한국축산식품학회지
    • /
    • 제33권3호
    • /
    • pp.417-424
    • /
    • 2013
  • 본 연구를 통해 현행 이소말토올리고당 분석법의 한계를 극복하고 원료 시럽뿐만 아니라 발효유 중의 미량의 이소말토올리고당 함량을 신속, 정확하게 분석하기 위한 새로운 분석법을 개발하였다. IDF method와 dSPE 기술을 적용하여 전처리 방법을 개선하였고, 당 전용 컬럼과 ELSD를 이용하여 기기분석조건을 최적화하였다. 새롭게 개발된 분석법은 유효성 검증 절차에 의해 선택성, 직선성, 검출한계 및 정량한계, 회수율, 정확성 및 정밀성이 유효함을 확인하였다. 또한 시장에서 유통 중인 시럽 및 발효유 제품을 분석한 결과 이전에 발표된 연구결과와 일치하는 결론을 얻었으며(Goffin et al., 2011), 이소말토올리고당을 구성하는 성분 중 panose, isomaltose 및 isomaltotriose가 가장 많은 비율을 차지하는 것을 확인하였다. 본 연구 결과는 지방 및 단백질이 많고 유화의 특성을 가진 발효유 중에서의 이소말토올리고당 함량을 신속, 정확하게 분석할 수 있는 기술이 될 것으로 기대된다. 이러한 분석 기술은 향후 식품산업현장에는 물론 발효유를 소비하는 소비자들에게 발효유의 기능성에 대한 정확한 평가를 가능하게 하고, 이소말토올리고당 뿐만 아니라 당 분석을 위한 기초 연구자료로 활용될 것으로 기대된다.

Aminopropyl Triethoxysilane과 아크릴 단량체를 이용한 Silylated Acrylic Polyurethane Dispersion의 제조 (Preparation of Silylated Acrylic Polyurethane Dispersion Using Aminopropyl Triethoxysilane and Acrylate Monomers)

  • 김병석;윤동구;유병원;이명구;변태강;송기창
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.639-645
    • /
    • 2012
  • Isophorone diisocyanate, polycarbonate diol, dimethylol propionic acid를 출발물질로 하여 제조된 폴리우레탄 prepolymer의 미반응 NCO 기를 실란커플링제인 aminopropyl trietoxysilane (APS)로 capping시켜 수분산 폴리우레탄(waterborne polyurethane dispersion, PUD)을 합성하였다. 그 후 이 PUD에 아크릴 단량체인 2-hydroxyethyl methacrylate와 methyl methacrylate의 혼합물을 첨가하고 중합시켜 silylated acrylic polyurethane dispersion을 제조하였다. 동적 빛 산란법에 의해 측정된 silylated acrylic polyurethane dispersion의 평균 직경은 APS 첨가량이 증가됨에 따라 39.0 nm에서 399.8 nm로 크게 증가하였다. 또한 코팅 도막의 연필경도는 APS의 첨가량이 증가되면서 B에서 F로 향상되었다.

PEG-PPG 블록 공중합체를 이용한 폴리(DL-락타이드-co-글리콜라이드) 나노입자의 제조 (Preparation of Poly(Dt-lactide-co-glycolide) Nanoparticles by PEG-PPG Diblock Copolymer)

  • 정택규;오유미;신병철
    • 폴리머
    • /
    • 제27권4호
    • /
    • pp.370-376
    • /
    • 2003
  • 나노입자의 제조 방법인 개선된 자발적 용매 확산 방법을 이용하여 폴리(DL-락타이드-co-글리콜라이드) 나노입자를 제조하였다. 고분자 용액은 물에 잘 혼합되는 유기 용매인 에탄올과 아세톤의 이종 혼합 용매를 사용하여 제조하였다. 유화제 및 안정제는 우수한 생체적합성을 갖는 PEG-PPG 블록 공중합체를 사용하였다. 최적의 나노입자 제조 조건을 얻기 위하여 나노입자 형성에 영향을 주는 인자들인 안정제의 종류 및 농도, 교반 방법, 물/오일 상의 비, 고분자의 농도 등을 고려하였다. 나노입자 제조 후, 입자의 크기 및 분산도는 광산란 입도 분석기를 이용하여 평가하였다. 제조된 나노입자는 50~200 nm의 크기와 단분산 형태의 크기분포를 보였다. 또한, 유기상과 수용액상에서 이종 혼합 용매와 고분자의 농도에 대한 적당한 조건을 조절함으로써 PLGA 나노입자의 높은 수율과 우수한 물리적 특성을 얻을 수 있었다.

HPLC-ELSD법에 의한 길경의 platycodin D 정량분석 (Quantitative Analysis of Platycodin D from Platycodon grandiflorum by HPLC-ELSD)

  • 김금숙;김현태;성재덕;박희생;김수동
    • 한국약용작물학회지
    • /
    • 제10권3호
    • /
    • pp.200-205
    • /
    • 2002
  • 길경의 부탄올 분획으로부터 지표성분을 분리, 정제하기 위해 $SiO_2$ 컬럼크마토그래피를 실시한 결과 1종(화합물 1)의 단일 물질을 순수 분리하였으며 화합물 1의 구조는 $^1H$, $^{13}C$ NMR 등 분광학적 관측 결과 platycodin D로 확인되었다. Platycodin D의 HPLC 정량법을 검토한 결과, 검출기는 증기화광산란검출기(ELSD)를, 컬럼은 역상컬럼을 사용하여 길경 MeOH 추출액으로부터 효율적인 지표성분 정량이 가능하였다. 추출조건을 재검토한 결과 환류추출보다는 초음파 추출이 더 효율적이었으며 추출용매로는 80% MeOH이 다른 용매조건보다 추출효율이 우수하였다. 건조조건의 검토에서는 platycodin D의 함량이 양건이나 양건과 건조기 혼용건조 보다 건조기 단독 건조시 더 높았으며 특히 $60^{\circ}C$ 열풍건조에서 그함량이 0.083%로서 가장 높았다. 묽은 에탄올 엑스 함량도 건조기만을 이용한 열풍건조가 양건과 건조기 열풍건조를 혼용한 방법보다 4% 정도 더 높았다.

Plasmid DNA의 세포전이에 대한 PEI 분자량의 영향 (Effect of Molecular Weight of Polyethylenimine on the Transfection of Plasmid DNA)

  • 이경만;김인숙;이용복;신상철;오인준
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권1호
    • /
    • pp.17-23
    • /
    • 2005
  • Polyethylenimine (PEI) has been used as cationic polymers for efficient gene transfer without the need for endosomolytic agents. Various kinds of PEIs with different molecular weight were tested in order to investigate the effects of the molecular weight of PEI on the transfection efficiency and cell cytotoxicity. The ${\beta}-galactosidase$ expression $(pCMV-{\beta}-gal)$ plasmid was used as a model DNA. Complex formation between PEI and pDNA was assessed by 1% agarose gel electrophoresis method. Particle size and zeta-potential of complexes were determined by electrophoretic light scattering spectrometer. In vitro transfection efficiency was assayed by measuring ${\beta}-galactosidase$ activity. Cell cytotoxicity was determined by MTT assay. Particle sizes of the complexes became smaller on increasing molecular weights of PEI and N/P ratios. Surface potential of complexes was increased as the molecular weight of PEI increased. Transfection efficiency of $pCMV-{\beta}-ga1$ on the HEK 293 cells was greatest with PEI 25 K system but having the lowest cell viability. PEI with high molecular weight showed higher transfection efficiency and cell viability than PEI with low molecular weight.

Study for Organic(Bio)-Inorganic Nano-Hybrid OMC

  • Lee, Jung-Eun;Ji, Hong-Geun;Park, Yoon-Chang;Lee, Kyoung-Chul;Yoo, Eun-Ah
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.178-191
    • /
    • 2003
  • OMC is essentialiy necessary compound in sun goods as organic UV protecting products. But the skin-trouble problem is raising because of skin penetration of OMC. In this study, non-capsulated pure OMC was compared with Organic-Inorganic-Nano-hybrid OMC for skin penetration force and SPF degree. Organic- Inorganic Nano-Hybrid OMC is OMC trapped in the pore of the mesoporous silica synthesized by the sol-gel method after OMC is nanoemulsified in the system of the hydrogenated Lecithin/ Ethanol/caprylic/capric triglyceride/OMC/water. OMC- nano- emulsion was obtained by a microfluidizing process at 1000bar and then micelle size in the nanoemulsion solution is 100-200nm range. Mesoporous silica nano-hybrid OMC was prepared by the process; surfactant was added in dissolved OMC-Nanoemulsion, then the rod Micelle was formed. OMC-nanoemulsion was capsulated in this rod Micelle and then silica precursor was added in the OMC-nanoemulsion solution. Through the hydrolysis reaction of the silica precursor, mesoporous silica concluding OMC-Nanocapsulation was obtained. The nano-hybrid surface of this OMC-Nanoemulsion-Inorganic system was treated with polyalkyl-silane compound. OMC-Mesoporous silica Nano-hybrids coated with polyalkyl-silane compound show the higher sun protecting factor (SPF Analyzer: INDEX 10-15) than pure OMC and could reduce a skin penetration of OMC. The physico-chemical properties of these nano-hybrids measured on the SPF index, partical size, strcture, specific surface area, pore size, morphology, UV absorption, rate of the OMC dissolution using SPF Analyzer, Laser light scattering system, XRD, BET, SEM, chroma Meter, HPLC, Image analyzer, microfluidizer, UV/VIS. spectrometer.

  • PDF

H-형태 양친매성 펜타블록 공중합체의 화학효소적 합성과 자기회합거동 평가 (Chemoenzymatic Synthesis of H-shaped Amphiphilic Pentablock Copolymer and Its Self-assembly Behavior)

  • Chen, Peng;Li, Ya-Peng;Li, Cai-Jin;Meng, Xin-Lei;Zhang, Bao;Zhu, Ming;Liu, Yan-Jing;Wang, Jing-Yuan
    • 폴리머
    • /
    • 제37권3호
    • /
    • pp.332-341
    • /
    • 2013
  • H-shaped amphiphilic pentablock copolymers $(PSt)_2-b-PCL-b-PEO-b-PCL-b-(PSt)_2$ was synthesized via chemoenzymatic method by combining enzyme-catalyzed ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (${\varepsilon}$-CL) and atom transfer radical polymerization (ATRP) of styrene. By this process, we obtained copolymers with controlled molecular weight and low polydispersity. The structure and composition of the obtained copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and infrared spectroscopy analysis (IR). The crystallization behavior of the copolymers was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization behavior of the H-shaped block copolymers demonstrated a PCL dominate crystallization. The self-assembly behavior of the copolymers was investigated in aqueous media. The hydrodynamic diameters of the copolymer micelles in aqueous solution were measured by dynamic light scattering (DLS). The morphology of the copolymer micelles was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hydrodynamic diameters of spherical micelles declined gradually with the increase of the hydrophobic chain lengths of the copolymers. The critical micelle concentration (CMC) values were determined from fluorescence emission, and it was found that the CMCs decreased with an increase of PSt hydrophobic block lengths.

Preparation and Characterizations of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymer Nanoparticles

  • Choi, Chang-Yong;Chae, Su-Young;Kim, Tai-Hyoung;Jang, Mi-Kyeong;Cho, Chong-Su;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.523-528
    • /
    • 2005
  • Diblock copolymers with different poly($\varepsilon$-caprolactone) (PCL) block lengths were synthesized by ringopening polymerization of $\varepsilon$-caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG-OH, MW 2000) as initiator. The self-aggregation behaviors of the diblock copolymer nanoparticle, prepared by the diafiltration method, were investigated by using $^1H$ NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG-PCL block copolymers formed the nano-sized self-aggregate in an aqueous environment by intrsa- and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations (cac) of the block copolymer self-aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The hydrodynamic diameters of the block copolymer nanoparticles, measured by DLS, were in the range of 65-270 nm. Furthermore, the size of the nanoparticles was scarcely affected by the concentration of the block copolymers in the range of 0.125-5 mg/mL owing to the negligible interparticular aggregation between the self-aggregated nanoparticles. Considered with the fairly low cac and nanoparticle stability, the PEG-PCL nanoparticles can be considered a potential candidate for biomedical applications such as drug carrier or imaging agent.

소형 직화식 커피 로스터 이용 시 발생하는 미세먼지 특성 연구 (Characteristics of Particulate Matter Generated during the Operation of a Small Directly Fired Coffee Roaster)

  • 유다은;김승원
    • 한국산업보건학회지
    • /
    • 제30권2호
    • /
    • pp.236-248
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the concentrations of particulate matter generated during coffee roasting and to study various factors affecting the concentrations. Methods: Differences in concentration levels were investigated based on various factors to understand the emission rates of particulate matter over time and to compare the mass and number concentrations according to their size. Sampling was performed in closed laboratories without the operation of air conditioning or ventilation. Optical Particle Sizer(OPS) was used as a measuring device. An OPS measures using a light-scattering method. Sampling was performed for sixty minutes at one-minute intervals. The background concentration was measured for about 30 minutes before starting of coffee roasting. The concentrations of particulate matter generated during coffee roasting were monitored until roasted coffee beans were removed from the roaster and cooled down. Several factors affecting the concentrations of particulate matter were investigated, which includes the origins of green beans, the roasting level, and the input amount of green beans. Results: The results of this study may be summarized as follows: 1) There was no difference in particulate matter concentration levels by the origin of the green beans, but a statistically significant difference in concentration levels by roasting level and the input amount of green beans; The higher the roasting level, the higher was the particulate matter concentration. The more green beans we put in the roaster, the higher were the concentrations; 2) The PM10 mass concentrations increased over time. The average concentration after roasting was higher than the average concentration during roasting; 3) In the distribution of mass and number concentration by particle diameter, the majority of particles was below 2.5 ㎛. Conclusions: Persons who work in roastery cafes can be exposed to high concentrations of particulate matter. Therefore, personal exposure and risk assessment should be conducted for roastery cafe workers.

The photocatalytic activities of nano-titanium dioxide on the cotton fabrics for self-cleaning properties

  • Metanawin, Siripan;Metanawin, Tanapak;Panutumrong, Praripatsaya;Hathaiwaseewong, Sunee;Chaichalermvong, Tirapong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.129-137
    • /
    • 2015
  • The study of photocatalysis of nano titanium dioxideon the cotton fabrics have been investigatedthrough self-cleaning properties. The mini-emulsion technique was employed to prepare the encapsulation of titanium dioxide nano particles in polystyrene beads prior used. The mini-emulsion was coated on the cotton fabrics using Pad-dry method.The loading amount of TiO2particles into the mini-emulsion were various from 1%wt to 40%wt. The particles sizes of the TiO2-encapsulated polystyrene mini-emulsion were investigated by dynamic light scattering. It was noticed that the particle size of the mini-emulsion was in the range of 100- 200 nm. The morphology of treated cotton fabrics were investigated using scanning electron microscopy. The crystal structure of TiO2-encapsulated PS mini emulsion which coated on cotton fabrics were examined by X-ray diffraction spectroscopy. In order to investigate the photocatalytic activities of TiO2 through the selfcleaning characteristics of the cotton fabrics, colorant stains were created on the samples. Coffee stains were used as colorant organic stains. The result shown that the coffee stained on the cotton fabrics significantly showed the improving of the self-cleaning properties under UV radiation.