DOI QR코드

DOI QR Code

Preparation and Characterizations of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymer Nanoparticles

  • Choi, Chang-Yong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Chae, Su-Young (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Kim, Tai-Hyoung (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Cho, Chong-Su (School of Agricultural Biotechnology, Seoul National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • Published : 2005.04.20

Abstract

Diblock copolymers with different poly($\varepsilon$-caprolactone) (PCL) block lengths were synthesized by ringopening polymerization of $\varepsilon$-caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG-OH, MW 2000) as initiator. The self-aggregation behaviors of the diblock copolymer nanoparticle, prepared by the diafiltration method, were investigated by using $^1H$ NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG-PCL block copolymers formed the nano-sized self-aggregate in an aqueous environment by intrsa- and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations (cac) of the block copolymer self-aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The hydrodynamic diameters of the block copolymer nanoparticles, measured by DLS, were in the range of 65-270 nm. Furthermore, the size of the nanoparticles was scarcely affected by the concentration of the block copolymers in the range of 0.125-5 mg/mL owing to the negligible interparticular aggregation between the self-aggregated nanoparticles. Considered with the fairly low cac and nanoparticle stability, the PEG-PCL nanoparticles can be considered a potential candidate for biomedical applications such as drug carrier or imaging agent.

Keywords

References

  1. Hubbell, J. A. Science 2003, 300, 595 https://doi.org/10.1126/science.1083625
  2. Cudd, A.; Bhogal, M.; OMullane, J.; Goddard, P. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 10855 https://doi.org/10.1073/pnas.88.23.10855
  3. Kwon, S.; Park, J. H.; Chung, H.; Kwon, I. C.; Jeong, S. Y.; Kim, I. Langmuir 2003, 19, 10188 https://doi.org/10.1021/la0350608
  4. Kataoka, K.; Harada, A.; Nagasaki, Y. Adv. Drug Delivery Rev. 2001, 47, 113 https://doi.org/10.1016/S0169-409X(00)00124-1
  5. Lee, K. Y.; Jo, W. H.; Kwon, I. C.; Kim, Y.; Jeong, S. Y. Macromolecules 1998, 31, 378 https://doi.org/10.1021/ma9711304
  6. Hrkach, J. S.; Peracchia, M. T.; Domb, A.; Lotan, N.; Langer, R. Biomaterials 1997, 18, 27 https://doi.org/10.1016/S0142-9612(96)00077-4
  7. Riley, T.; Stolnik, S.; Heald, C. R.; Xiong, C. D.; Garnett, M. C.; Illum, L.; Davis, S. S.; Purkiss, S. C.; Barlow, R. J.; Gellert, P. R. Langmuir 2001, 17, 3168 https://doi.org/10.1021/la001226i
  8. Kataoka, K.; Kwon, G.; Kato, S.; Yokoyama, M.; Okano, T.; Sakurai, Y. J. J. Control. Rel. 1993, 24, 119 https://doi.org/10.1016/0168-3659(93)90172-2
  9. Yamamoto, Y.; Nagasaki, Y.; Kato, Y.; Sugiyama, Y.; Kataoka, K. J. Control. Rel. 2001, 77, 27 https://doi.org/10.1016/S0168-3659(01)00451-5
  10. Matsumura, Y.; Maeda, H. Cancer Res. 1986, 46, 6387
  11. Kwon, G.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. J. Control. Rel. 1997, 48, 195 https://doi.org/10.1016/S0168-3659(97)00039-4
  12. Kwon, G. S.; Okano, T. Pharm. Res. 1999, 16, 597 https://doi.org/10.1023/A:1011991617857
  13. Lee, E. S.; Na, K.; Bae, Y. H. J. Control. Rel. 2003, 91, 103 https://doi.org/10.1016/S0168-3659(03)00239-6
  14. Son, Y. J.; Jang, J.; Cho, Y. W.; Chung, H.; Park, R.; Kwon, I. C.; Kim, I.; Park, J. Y.; Seo, S. B.; Park, J. R.; Jeong, S. Y. J. Control. Rel. 2003, 91, 135 https://doi.org/10.1016/S0168-3659(03)00231-1
  15. Yokoyama, M.; Fukushima, S.; Uehara, R.; Okamoto, K.; Kataoka, K.; Sakurai, Y.; Okano, T. J. Control. Rel. 1998, 50, 9
  16. Huh, K. M.; Lee, K. Y.; Kwon, I. C.; Kim, Y.; Kim, C.; Jeong, S. Y. Langmuir 2000, 16, 10566 https://doi.org/10.1021/la000978+
  17. Kim, C.; Lee, S. C.; Kang, S. W.; Kwon, I. C.; Kim, Y.; Jeong, S. Y. Langmuir 2000, 16, 4792 https://doi.org/10.1021/la9907634
  18. Akiyoshi, K.; Deguchi, S.; Tajima, H.; Nishikawa, T.; Sunamoto, J. Macromolecules 1997, 30, 857 https://doi.org/10.1021/ma960786e
  19. Lee, K. Y.; Jo, W. H.; Kwon, I. C.; Kim, Y.; Jeong, S. Y. Langmuir 1998, 14, 2329 https://doi.org/10.1021/la970928d
  20. Luo, L.; Tam, J.; Maysinger, D.; Eisenberg, A. Bioconjugate Chem. 2002, 13, 1259 https://doi.org/10.1021/bc025524y
  21. Maysinger, D.; Berezovska, O.; Savic, R.; Soo, P. L.; Eisenberg, A. Biochimica et Biophysica Acta 2001, 1539, 205 https://doi.org/10.1016/S0167-4889(01)00110-0
  22. Savic, R.; Luo, L.; Eisenberg, A.; Maysinger, D. Science 2003, 300, 615 https://doi.org/10.1126/science.1078192
  23. Lee, S. C.; Chang, Y.; Yoon, J.; Kim, C.; Kwon, I. C.; Kim, Y.; Jeong, S. Y. Macromolecules 1999, 32, 1847 https://doi.org/10.1021/ma981664k
  24. Yuan, M.; Wang, Y.; Li, X.; Xiong, C.; Deng, X. Macromolecules 2000, 33, 1613 https://doi.org/10.1021/ma991388p
  25. Zhang, G.; Niu, A.; Peng, S.; Jiang, M.; Tu, Y.; Li, M.; Wu, C. Acc. Chem. Res. 2001, 34, 24
  26. Albertsson, A.; Varma, I. K. Biomacromolecules 2003, 4, 1466 https://doi.org/10.1021/bm034247a
  27. Lele, B. S.; Leroux, J.-C. Macromolecules 2002, 35, 6714 https://doi.org/10.1021/ma020433h
  28. Soo, P. L.; Luo, L.; Maysinger, D.; Eisenberg, A. Langmuir 2002, 18, 9996 https://doi.org/10.1021/la026339b
  29. Gan, Z.; Jim, T. F.; Li, M.; Yuer, Z.; Wang, S.; Wu, C. Macromolecules 1999, 32, 590 https://doi.org/10.1021/ma981121a
  30. Persenaire, O.; Alexandre, M.; Degee, P.; Dubois, P. Biomacromolecules 2001, 2, 288 https://doi.org/10.1021/bm0056310
  31. Li, S.; Garreau, H.; Pauvert, B.; McGrath, J.; Toniolo, A.; Vert, M. Biomacromolecules 2002, 3, 525 https://doi.org/10.1021/bm010168s
  32. Kim, S. Y.; Shin, I. G.; Lee, Y. M.; Cho, C. S.; Sung, Y. K. J. Control. Rel. 1998, 51, 13 https://doi.org/10.1016/S0168-3659(97)00124-7
  33. Allen, C.; Han, J.; Yu, Y.; Maysinger, D.; Eisenberg, A. J. Control. Rel. 2000, 63, 275 https://doi.org/10.1016/S0168-3659(99)00200-X
  34. Lin, W.; Juang, L.; Lin, C. Pharm. Res. 2003, 20, 668 https://doi.org/10.1023/A:1023215320026
  35. Harada, A.; Kataoka, K. Macromolecules 1995, 28, 5294 https://doi.org/10.1021/ma00119a019
  36. Harada, A.; Kataoka, K. Macromolecules 1998, 31, 288 https://doi.org/10.1021/ma971277v
  37. Heald, C. R.; Stolnik, S.; Kujawinski, K. S.; Matteis, C. D.; Garnett, M. C.; Illum, L.; Davis, S. S.; Purkiss, S. C.; Barlow, R. J.; Gellert, P. R. Langmuir 2002, 18, 3669 https://doi.org/10.1021/la011393y
  38. Han, S. K.; Na, K.; Bae, Y. H. Colloids Surf. A, Physicochem. Eng. Aspects 2003, 214, 49
  39. Wilhelm, M.; Zhao, C.; Wang, Y.; Xu, R.; Winnik, M. A.; Mura, J.; Riess, G.; Croucher, M. D. Macromolecules 1991, 24, 1033 https://doi.org/10.1021/ma00005a010

Cited by

  1. The Effect of Trifluoroacetic Anhydride on Poly(ϵ-caprolactone) (PCL) Oligomers vol.16, pp.6, 2011, https://doi.org/10.1080/1023666X.2011.596264
  2. Topical delivery of retinol emulsions co-stabilised by PEO-PCL-PEO triblock copolymers: effect of PCL block length vol.29, pp.8, 2012, https://doi.org/10.3109/02652048.2012.686528
  3. Development of implantable hydroxypropyl-β-cyclodextrin coated polycaprolactone nanoparticles for the controlled delivery of docetaxel to solid tumors vol.80, pp.1-2, 2014, https://doi.org/10.1007/s10847-014-0422-6
  4. Hydrogen Sulfide Triggered Charge-Reversal Micelles for Cancer-Targeted Drug Delivery and Imaging vol.8, pp.25, 2016, https://doi.org/10.1021/acsami.6b03254
  5. Tunable Surface Repellency Maintains Stemness and Redox Capacity of Human Mesenchymal Stem Cells vol.9, pp.27, 2017, https://doi.org/10.1021/acsami.7b06103
  6. Osteochondral Regeneration Induced by TGF-β Loaded Photo Cross-Linked Hyaluronic Acid Hydrogel Infiltrated in Fused Deposition-Manufactured Composite Scaffold of Hydroxyapatite and Poly (Ethylene Glycol)-Block-Poly(ε-Caprolactone) vol.9, pp.6, 2017, https://doi.org/10.3390/polym9050182
  7. Effects of Biodegradable Triblock Copolymers on the Microencapsulation of Ascorbic Acid-2-Glucoside in W1/O/W2 Multi-Emulsions vol.249-250, pp.1, 2007, https://doi.org/10.1002/masy.200750316
  8. Preparation and characterization of poly(styrene-alt-maleic acid)-b-polystyrene block copolymer self-assembled nanoparticles vol.286, pp.14-15, 2008, https://doi.org/10.1007/s00396-008-1934-7
  9. Biodegradable polymeric micro-nanofibers by electrospinning of polyester/polyether block copolymers vol.110, pp.1, 2008, https://doi.org/10.1002/app.28640
  10. Synthesis and characterization of fluorescein isothiocyanate (FITC)-labeled PEO–PCL–PEO triblock copolymers for topical delivery vol.50, pp.11, 2009, https://doi.org/10.1016/j.polymer.2009.03.032
  11. Functionalization of emissive conjugated polymer nanoparticles by coprecipitation: consequences for particle photophysics and colloidal properties vol.27, pp.30, 2016, https://doi.org/10.1088/0957-4484/27/30/305603