• Title/Summary/Keyword: Light harvest

Search Result 149, Processing Time 0.029 seconds

Breeding of Middle Season Pear Cultivar 'Shinil' with Attractive Appearance for Chuseok Season (외관(外觀)이 수려한 추석(秋夕) 출하용 중생종 배 '신일(新一)' 육성(育成))

  • Kim, Whee-Cheon;Hwang, Hae-Sung;Shin, Yong-Uk;Shin, Il-Sheob;Lee, Don-Kyun;Kang, Sang-Jo;Cheon, Byung-Deok;Moon, Jong-Youl;Kim, Jung-Ho
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.60-65
    • /
    • 2001
  • 'Shinil' pear cultivar (Pyrus pyrifolia Nakai) which was originated in a cross between 'Shinko' (non-patented, released in 1941) and 'Hosui' (non-patented, released in 1972) in 1978 was released as a middle season harvest variety. Its usual picking time coincided with 'Chuseok' season which is one of the most famous national holiday in Korea. The fruit showed high soluble solids content and good appearance. The cultivar was preliminarily selected in 1991, and its regional adaptability was evaluated in the name of 'Wonkyo Na-13' at 9 sites for four years from 1992, and finally selected and named in 1995. 'Shinil' is medium in tree vigor like 'Hosui' and spreading in tree habit as 'Niitaka', a leading cultivar in Korea, and consistently very productive. It has high resistance to black rot caused by Alternaria kikuchiana and pear necrotic spot caused by pear necrotic spot virus. Its full bloom is one day earlier than that of 'Niitaka' cultivar and harvest time is September 25 at Suwon area which is 3 days later than that of 'Hosui'. Fruit is round in shape with a deep medium stalk cavity and medium calyx basin and has attractive light yellow brown skin color. The fruit weight ranges between 300 and 400 g, which is similar to 'Chojuro', 'Shinko', and 'Hosui'. Soluble solid content is approximately at the level of 13-14 Brix, which is higher than that of 'Chojuro'. The flesh is cream-white, very juicy, and light grit with soft and fine texture.

  • PDF

Analysis of growth environment by smart farm cultivation of oyster mushroom 'Chunchu No 2' (병재배 느타리버섯 '춘추 2호'의 스마트팜 재배를 통한 생육환경 분석)

  • Lee, Chan-Jung;Park, Hye-Sung;Lee, Eun-Ji;Kong, Won-Sik;Yu, Byeong-Kee
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.119-125
    • /
    • 2019
  • This study aims to report the results for the analysis of the growth environment by applying smart farm technology to "Chunchu No 2" farmers in order to develop an optimal growth model for precision cultivation of bottle-grown oyster mushrooms. The temperature, humidity, carbon dioxide concentration, and illumination data were collected and analyzed using an environmental sensor installed to obtain growth environment data from the oyster mushroom cultivator. Analysis of the collected temperature data revealed that the temperature at the time of granulation was $19.5^{\circ}C$ after scraping, and the mushroom was generated and maintained at about $21^{\circ}C$ until the bottle was flipped. When the fruiting body grew and approached harvest time, mushrooms were harvested while maintaining the temperature between $14^{\circ}C$ and $18^{\circ}C$. The humidity was maintained at almost 100% during the complete growth stage. Carbon dioxide concentration gradually increased until 3 days after the beginning of cultivation, and then increased rapidly to almost 5,500 ppm. From the 6th day, carbon dioxide concentration was gradually decreased through ventilation and was maintained at 1,600 ppm during harvest. Light intensity of 8 lux was irradiated up to day 6 after seeding, and growth was then continued while periodically irradiating 4 lux light. The fruiting body characteristics of "Chunchu No 2" cultivated in the farmhouse were as follows: pileus diameter of 26.5 mm and thickness of 4.9 mm, stipe thickness of 8.9 mm, and length of 68.7 mm. The fruiting body yield was 166.8 g/850 ml, and the individual weight was 12.8 g/10 units.

Status of Automatization in Protected Horticultural Facilities and Prospect of Plant Factory in Korea (한국의 원예시설 자동화 현황 및 식물공장의 발전방향)

  • 윤진하
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.91-115
    • /
    • 1996
  • In the recent years, protected horticultural facilities have been modernized and glasshouses are also propagating in Korea, even most vegetables production are conducted in the traditional plastic houses covered with, for example, PVC film for just temperature keeping. It would limit the productivity and competitivity of the vegetable production industry without automatization and high quality year round production. A plant factory, aimed to produce vegetables in the limited areas, was initiated in Christensen farm, Denmark in 1957, and widely propagated in some developed countries. As it has the automatized system which enables to keep optimized environment conditions, it will be the best facility for high quality products as well as year round planned production. However, we have not even started the plant factory production. Since the plant factory is requiring lots of resources, besides plant cultivation technologies, such as environment control, automatic engineering and robotics, our approach to the development of plant factories should be minded on Practical Plant Factories considering our current farming practices and least capital needs rather than blindly employing the advanced technologies from developed countries. Thus, Korean plant factory development can be initiated with year round leaf vegetables production in NFT or DFT cultivation system instead of the moval bed system, in which aerial environment factors such as light, temperature, humidity and CO$_2$ concentration and root environment ones such as solution concentration, temperature, pH and water soluble oxygen shall be automatically controlled. And the seeding, seedling and transplanting operations shall be accomplished in the house entrance, and the harvesting and grading opreations shall be conducted in the house exit. For practical plant factories, environment control technologies including artificial light source, illumination and air conditioning, automatic management for nutrient solution and automatic production line of moval bed system, transplanting and harvest should be developed along with researches on the cost reduction of factory building construction.

  • PDF

Effects of fruit bags and bagging time on fruit quality indices at harvest time in 'Wonhwang' and 'Whasan' pears (봉지종류 및 괘대시기가 '원황' 및 '화산' 배 과실의 수확기 품질에 미치는 영향)

  • Jung, Ok-Kun;Lee, Ug-Yong;Ahn, Young-Jik;Lee, Hyuk-Jae;Hwang, Yong-Soo;Chun, Jong-Pil
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • We tested fruits quality and skin coloration of two pear cultivar 'Wonhwang' and 'Whasan' produced by bagging with different kinds of paper bags in the Cheonan area, Chungnam Province, Korea. The fruits were bagged at 35, 45, 55 or 65 days after full bloom (DAFB) with 3 kinds of double layer paper bag which consisted of grey color, yellow color and newspaper for outer layer. The great extent of light interruption was observed in grey colored outer paperbag among three kinds of paperbag which showed only 0.46% of lowest light transmittance when compared with 43.7% and 40.0% of yellow paper and newspaper, respectively. The development of skin redness ($a^*$) increased with the delay of bagging time in two pear cultivars. But the fruits treated at 65 DAFB showed uneven coloration and excessive development of redness which represented low fruit external appearance value. Uniform flesh firmness was attained at the fruits bagged with grey outer color paperbag regardless of bagging time, although the fruit quality indices including soluble solids and titratable acidity did not change significantly by using different kind of fruit bags and bagging time in two pear cultivar. Based on our results, it was explained that the grey-colored fruit bag had positive effect on the development of skin coloration without any detrimental effect on fruit quality factors in 'Wonhwang' and 'Whasan' pears.

Effect of Cultivation Method, Harvest Season and Preservative Solution on the Quality and Vase Life of Cut Rose 'Rote Rose' (롯데로제 장미의 재배방법, 수확시기 및 보존제 종류가 절화 품질과 수명에 미치는 영향)

  • Cho, Mee Sook;Hwang, Seung Jae;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • Experiments were conducted to evaluate quality and vase life of cut rose 'Rote Rose' cultivated in soil or hydroponically in rockwool. Rose flower stems harvested in commercial greenhouses in Kimhae on May 27 and June 14, 1998 were transported for about two hours to a laboratory and recut in water to an uniform stem length of 45cm. The rose flowers harvested on the same day were displayed at a density of $10cm{\times}10cm$ and were subjected to the same environmental conditions in a growth chamber. The stems were put in four different preservative solutions, 0.5% Chrysal RVB, BS (2% sucrose+200ppm 8HQS+0.3% Chrysal RVB), Sonk1 (BS+0.1mM ethionine), and double distilled $H_2O$. Flower stems harvested on May 27 were displayed at $18{\pm}1^{\circ}C$, RH 60-70%, and light intensity of 220lux provided by fluorescent lamps for $16h{\cdot}d^{-1}$. Flower stems harvested on June 14 were displayed at $25{\pm}1^{\circ}C$, RH 70-80%, and light intensity of 220lux provided by fluorescent lamps for $16h{\cdot}d^{-1}$. Fresh weight and flower diameter were affected by cultivation method, and were greater in hydroponically-grown roses than in soil-grown roses. Among the preservative solutions, BS and Sonk1 were superior to Chrysal RVB in terms of prolonging vase life. Vase life extension in Chrysal RVB, BS and Sonk1 over the control was about one day in both display temperatures. At $18^{\circ}C$ vase life was maintained for three to four additional days as compared to that at $25^{\circ}C$.

  • PDF

Environment Factors for Germination, Growing and Storage of Sprout Vegetables of Coreopsis tinctoria Nutt., Saussurea pulchella (Fisch.) Fisch. and Matricaria recutica L. (국화과 기생초, 각시취 및 저먼캐모마일 새싹채소의 발아, 재배 및 저장에 미치는 환경요인)

  • Lee, Moo-Yeul;Shin, So-Lim;Chang, Young-Deug;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.22 no.2
    • /
    • pp.136-144
    • /
    • 2009
  • Germination tests on 3 species that have potential for use as sprout vegetables, such as Coreopsis tinctoria, Saussurea pulchella, and Matricaria recutica, were conducted for 20 days under different temperatures of $15{\sim}30^{\circ}C$, and conditions of light and dark. C. tinctoria showed germination of 83% under $15^{\circ}C$ and dark condition after 4 days, S. pulchella 51.7% under $25^{\circ}C$ and light condition after 20 days, and M. recutica 90.3% under $25^{\circ}C$ and dark condition after 4 days. To investigate optimum plantlet size before greening treatment, seeds germinated were allowed to grow under darkness. The optimum growth of C. tinctoria was obtained under $30^{\circ}C$ after 5 days, S. pulchella under $25^{\circ}C$ after 6 days, and M. recutica under $20^{\circ}C$ after 6 days. Greening treatment resulted in diminished longitudinal growth, but C. tinctoria and S. pulchella showed more vigorous latitudinal growth. Days required before marketing as sprout vegetables were different according to species - Three days of greening was good for C. tinctoria, 2 for S. pulchella, no greening for M. recutica. Generally, tightly sealed containers for minimum water loss were recommended for storage of sprout vegetables after harvest. However, storage methods for each species were different depending on various factors like temperature of storage, presence of ventilation holes of storage packages and forms of marketing. More detailed research for above 3 species is proposed.

Biodegradable Film Decomposition Levels and Their Effects on Growth and Yield of Corn Crops

  • Ye Geon Kim;Hyun Hwa Park;Do Jin Lee;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.52-52
    • /
    • 2022
  • Recently, PE (polyethylene) film has been used increasingly in com cultivation. However, PE films often cause soil and environment contamination. In order to reduce this problem, many researches have been carrying out studies on biodegradable films (BF) that are easily decomposed by soil microorganisms. Therefore, this study was conducted to determine which BF is optimal for growth and yield of com crops while also having the highest rates of film decomposition. BFs Farmsbio (Farm Hannong), Heulgro Film (Sejin Bio), Vonto Film (Eco-Hansung) as well as a selected PE film were used in this study. For the control, we used crops grown without any kind of mulching. Experimental fields were fertilized according to conventional cultivation methods, tilled, and then covered by either BF or PE. After 1 week, com (cv. MIBECK2ho) at the 3-leaf stage (16 days after seeding) was transplanted. Plant height was measured at 18 and 32 days after transplanting and heading stages. Yield components and yield were also measured at harvest. In addition, pH, EC, and decomposition and light transmittance levels of films were investigated during the experimental period. Daily average temperature, relative humidity and organic matter in soils were also measured during the experimental period. There was no significant difference in plant height, heading date, and silking between crops with BFs and PE, but the crops grown with BFs and PE films reached higher growth parameters in a shorter amount of time than the crops in the non-mulching control. Additionally, there were no significant differences in yield components such as length of ears, ear width, ear weight, and yield in crops that were grown using films or crops in the control plot. Light transmittance and decomposition levels of films generally increased with time after transplanting, and was highest in the Heulgro film than other BFs. Soil pH and organic matter in crops using BFs and PE films were significantly higher than in the control plot at 99 and 113 days after transplanting. In general, the EC contents in the control plot was lower than in crops using BFs and PE films. The average daily moisture in soil was higher when BFs and PE films were used than in the control plot. However, the daily average soil temperature was higher in crops using BFs and PE films than in the control plots at the beginning of the experimental period, but there was no consistent difference in soil temperature towards the later part of the experimental period. Therefore, the BFs used in this study were shown to be helpful without causing negative impacts on the growth and yield of com.

  • PDF

Germination Characteristics of Chinese Milk Vetch(Astragalus sinicus L.) Seeds Produced in China and Korea (수입 및 국내 채종 자운영 종자의 발아 특성)

  • Kim, Sang-Yeol;Oh, Seong-Hwan;Choi, Kyung-Jin;Park, Sung-Tae;Kim, Jeong-Il;Yeo, Un-Sang;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.384-389
    • /
    • 2009
  • Germination characteristics of Chinese milk vetch(CMV) seeds produced from Hanam Province, China and Milyang, Korea were investigated to give basic information on the stability of seedling establishment in the CMV cultivation. The germination percentage of the imported CMV seed from China varied according to importation year and seed collection site ranging from 79~95%. The germination of black colored seed coat was lower than the light green colored ones and germination by seed weight was not significantly different. Although the seed germination was lower under dark than in the presence of light, it was not significantly different. The germination of the imported CMV seed slightly declined to only less than 6% after one-year of storage under natural environment conditions but it significantly decreased after two years. However, when the seed was stored at the $5^{\circ}C$, the seed germination was the same as after two years of storage. On the other hand, fresh CMV seed produced in Milyang, Korea had only 8% germination due to seed coat dormancy but the germination increased to 73~85% after breaking seed dormancy after a year of storage. The high germination percentage of 72~82% was still maintained even after 27 months of seed storage unlike the CMV seed produced from China. These results indicate that CMV seeds do not require light for germination and the seed from China should be used within one-year after importation while the seeds produced from Korea can be used even after two years from harvest for stable CMV seedling establishment in the CMV-rice cropping system.

Analysis of growth environment for precision cultivation management of the oyster mushroom 'Suhan' (병재배 느타리버섯 '수한'의 정밀재배관리를 위한 생육환경 분석)

  • Lee, Chan-Jung;Lee, Sung-Hyeon;Lee, Eun-Ji;Park, Hae-sung;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.155-161
    • /
    • 2018
  • In this study, we analyze the growth environment using smart farm technology in order to develop the optimal growth model for the precision cultivation of the bottle-grown oyster mushroom 'Suhan'. Experimental farmers used $88m^2$ of bed area, 2 rows and 5 columns of shelf shape, 5 hp refrigerator, 100T of sandwich panel for insulation, 2 ultrasonic humidifiers, 12 kW of heating, and 5,000 bottles for cultivation. Data on parameters such as temperature, humidity, carbon dioxide concentration, and illumination, which directly affect mushroom growth, were collected from the environmental sensor part installed at the oyster mushroom cultivator and analyzed. It was found that the initial temperature at the time of granulation was $22^{\circ}C$ after the scraping, and the mushroom was produced and maintained at about $25^{\circ}C$ until the bottle was flipped. On fruiting body formation, mushrooms were harvested while maintaining the temperature between $13^{\circ}C$ and $15^{\circ}C$. Humidity was approximately 100% throughout the growth stage. Carbon dioxide concentration gradually increased until 3 days after the beginning of cultivation, and then increased rapidly to approximately 2,600 ppm. From the 6th day, $CO_2$ concentration was gradually decreased through ventilation and maintained at 1,000 ppm during the harvest. Light was not provided at the initial stage of oyster mushroom cultivation. On the $3^{rd}$ and $4^{th}$ day, mushrooms were irradiated by 17 lux light. Subsequently, the light intensity was increased to 115-120 lux as the growth progressed. Fruiting body characteristics of 'Suhan' cultivated in a farmhouse were as follows: Pileus diameter was 30.9 mm and thickness was 4.5 mm; stipe thickness was 11.0 mm and length was 76.0 mm; stipe and pileus hardness was 0.8 g/mm and 2.8 g/mm, respectively; L values of the stipe and pileus were 79.9 and 52.3, respectively. The fruiting body yield was 160.2 g/850 ml, and the individual weight was 12.8 g/10 unit.

Comparing Photosynthesis, Growth, and Yield of Paprika (Capsicum annuum L. 'Cupra') under Supplemental Sulfur Plasma and High-Pressure Sodium Lamps in Growth Chambers and Greenhouses (황 플라즈마 및 고압나트륨 램프의 보광에 따른 생육상 및 온실에서의 파프리카 광합성 및 생산성 비교)

  • Park, Kyoung Sub;Kwon, Dae Young;Lee, Joon Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2018
  • Supplemental lighting with artificial light sources is a practical method that enables normal growth and enhances the yield and quality of fruit vegetable in greenhouses. The objective of this study was to investigate the effect of sulfur plasma lamp (SP) and high-pressure sodium lamp (HPS) as supplemental lighting sources on the growth and yield of paprika. For investigating the effectiveness of SP and HPS lamps on paprika, the effects of primary lighting on plant growth were compared in growth chambers and those of supplemental lighting were also compared in greenhouses. In the growth chamber, plant height, leaf area, stem diameter, number of leaves, fresh weight, and dry weight were measured weekly at SP and HPS from 2 weeks after transplanting. In the greenhouse, no supplemental lighting (only sunlight) was considered as the control. The supplemental lights were turned on when outside radiation became below $100W{\cdot}m^{-2}$ from 07:00 to 21:00. From 3 weeks after supplemental lighting, the growth was measured weekly, while the number and weight of paprika fruits measured every two weeks. In the growth chamber, the growth of paprika at SP was better than at HPS due to the higher photosynthetic rate. In the greenhouse, the yield was higher under sunlight with either HPS or SP than sunlight only (control). No significant differences were observed in plant height, number of node, leaf length, and fresh and dry weights between SP and HPS. However, at harvest, the number of fruits rather than the weight of fruits were higher at SP due to the enhancement of fruiting numbers and photosynthesis. SP showed a light spectrum similar to sunlight, but higher PAR and photon flux sum of red and far-red wavelengths than HPS, which increased the photosynthesis and yield of paprika.