• Title/Summary/Keyword: Light emitting diodes (LEDs)

Search Result 363, Processing Time 0.03 seconds

Electrically Driven Quantum Dot/wire/well Hybrid Light-emitting Diodes via GaN Nano-sized Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Kim, Ryeo-Hwa;Go, Seok-Min;Gwon, Bong-Jun;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.47-47
    • /
    • 2011
  • There have been numerous efforts to enhance the efficiency of light-emitting diodes (LEDs) by using low dimensional structures such as quantum dots (QDs), wire (QWRs), and wells (QWs). We demonstrate QD/QWR/QW hybrid structured LEDs by using nano-scaled pyramid structures of GaN with ~260 nm height. Photoluminescence (PL) showed three multi-peak spectra centered at around 535 nm, 600 nm, 665 nm for QWs, QWRs, and QDs, respectively. The QD emission survived at room temperature due to carrier localization, whereas the QW emission diminished from 10 K to 300 K. We confirmed that hybrid LEDs had zero-, one-, and two-dimensional behavior from a temperature-dependent time-resolved PL study. The radiative lifetime of the QDs was nearly constant over the temperature, while that of the QWs increased with increasing temperature, due to low dimensional behavior. Cathodoluminescence revealed spatial distributions of InGaN QDs, QWRs, and QWs on the vertices, edges, and sidewalls, respectively. We investigated the blue-shifted electroluminescence with increasing current due to the band-filling effect. The hybrid LEDs provided broad-band spectra with high internal quantum efficiency, and color-tunability for visible light-emitting sources.

  • PDF

Study of High-efficiency and Long-lived Blue - Green Light Emitting Diodes Using ZnSSe:Te System Grown by MBE (ZnSSe:Te계 청 -녹색 발광다이오드의 고효율화 및 장수명화에 관한 연구)

  • 이홍찬;이상태;이성근;김윤식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.167-171
    • /
    • 2002
  • We have investigated the optical properties of Te-doped ZnSSe:Te epitaxial layers grown on (100) GaAs substrates by molecular beam epitaxy. The Te-doped ternary specimen shows strong blue or green emission (at 300k) which is assigned to Te$_{1}$ or Te$_{n}$( n$\geq$2) cluster bound exciton. Bright green and blue light-emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer. The green LEDs exhibit a fairly long device lifetime (>2000 h) when operated at 3 A/cm$^{2}$ under CW condition at room temperature. It is confirmed that the Te-doping induced "crystal-hardening effect" plays a significant role in both efficient and strong suppression of the optical device degradation.gradation.

  • PDF

Effects of Various Intensities and Wavelengths of Light Emitting Diodes (LEDs) on the Growth of the Prasinophytes Tetraselmis suecica and T. tetrathele (담녹조강 Tetraselmis suecica 및 Tetraselmis tetrathele의 생장에 미치는 발광다이오드(Light-Emitting Diodes; LEDs) 광량과 파장의 영향)

  • Han, Kyong Ha;Oh, Seok Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.64-71
    • /
    • 2018
  • This study was conducted to investigate the effects of light intensity and wavelength on the growth of Tetraselmis suecica and Tetraselmis tetrathele. These species were exposed to a blue light-emitting diode (LED; max=450 nm), a yellow LED (max=590 nm), a red LED (max=630 nm) and a fluorescent lamp (three wavelengths). The maximum growth rates (${\mu}_{max}$) of T. suecica and T. tetrathele under a red LED were 1.12/day and 0.95/day, respectively. Under a yellow LED, growth rates were 70% of the values for red wavelength, with low half-saturation constants (Ks). The optimum light source to ensure economically effective and productive growth in a Tetraselmis culture system (Photo-Bioreactor) would thus appear to be a three-phase culture, wherein a yellow LED is used during the lag phase and initial exponential phase to increase growth rate, followed by a red LED during the middle exponential phase to maximize growth rate, and finally a yellow LED again during the late exponential phase and stationary phase to achieve increased yield of useful bioactive substances.

Vegetative Growth Characteristics of Phalaenopsis and Doritaenopsis Plants under Different Artificial Lighting Sources

  • Lee, Hyo Beom;An, Seong Kwang;Lee, Seung Youn;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • This study was conducted to determine the effects of artificial lighting sources on vegetative growth of Phalaenopsis and Doritaenopsis (an intergeneric hybrid of Doritis and Phalaenopsis) orchids. One - month - old plants were cultivated under fluorescent lamps, cool - white light - emitting diodes (LEDs), or warm - white LEDs at 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The blue (400 - 500 nm) : green (500 - 600 nm) : red (600 - 700 nm) : far - red (700 - 800 nm) ratios of the fluorescent lamps, cool-white LEDs, and warm-white LEDs were 1 : 1.3 : 0.8 : 0.1, 1 : 1.3 : 0.6 : 0.1, and 1 : 2.7 : 2.3 : 0.4, respectively. Each light treatment was maintained for 16 weeks in a closed plant-production system maintained at $28^{\circ}C$ with a 12 h photoperiod. The longest leaf span, as well as the leaf length and width of the uppermost mature leaf, were observed in plants treated with warm-white LEDs. Plants grown under fluorescent lamps had longer and wider leaves with a greater leaf span than plants grown under cool-white LEDs, while the maximum quantum efficiency of photosystem II was higher under cool-white LEDs. The vegetative responses affected by different lighting sources were similar at both 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Leaf span and root biomass were increased by the higher light intensity in both cultivars, while the relative chlorophyll content was decreased. These results indicate that relatively high intensity light can promote vegetative growth of young Phalaenopsis plants, and that warm - white LEDs, which contain a high red-light ratio, are a better lighting source for the growth of these plants than the cool-white LEDs or fluorescent lamps. These results could therefore be useful in the selection of artificial lighting to maximize vegetative growth of Phalaenopsis plants in a closed plant - production system.

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

Reliability and Degradation Mechanism of White GaN-Based Light-Emitting Diodes

  • Kim, Hyeon-Su;Jeong, Eun-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.22.2-22.2
    • /
    • 2011
  • Reliability and degradation mechanism of conventional phosphor-converted white GaN-based light-emitting diodes (LEDs) were investigated. Under electro-thermal stress condition, the optical output degraded rapidly at the initial stress time accompanied by the change of chromatic properties. This could be attributed to the optical degradation of packaged materials, in particular, the browning of encapsulants and the darkening of reflective packages. At longer stress times, the optical output gradually decreased according to the degree of the reverse leakage currents, namely, the generation ofnonradiative recombination defects. This indicates that the optical degradation of white LEDs are dominated by the darkening of packaged materials and the generation of defects depending on the injection current and ambient temperatures. Using analyses of electroluminescence spectra, optical microscopy, electrical, optical, and thermal properties, optical degradations of white LEDs are discussed.

  • PDF

High-performance InGaN/GaN-based Light-emitting Diodes Using Advanced Technical Approaches

  • Jang, Ja-Soon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.108-108
    • /
    • 2012
  • High-performance GaN-based light emitting diodes (LEDs) with high efficiency and excellent reliability have been of technological importance forapplications in full color display, automotive lighting, and solid state lighting. To realize high-performance and excellent-reliability LEDs, various technologies such as surface texturing, transparent conducting oxide, surface Plasmon, highly p-conduction layer, current blocking layer, photon-enhanced layer, and nanostructures have been extensively investigated. Among them, advanced core technologies based on how to suppress surface leakage and current crowding, how to enhance current injection efficiency and output power, and how to resist electrostatic damage will be displayed and discussed using our reported and preliminary results. New approaches like integrated LEDs will be also introduced and discussed.

  • PDF

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Jeong, Seonghoon;Kim, Hyunsoo;Lee, Sung-Nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1879-1883
    • /
    • 2018
  • We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

Light-emitting Diodes based on a Densely Packed QD Film Deposited by the Langmuir-Blodgett Technique (랭뮤어-블롯젯을 통해 형성된 고밀도 양자점 박막과 이를 기반으로 한 발광다이오드)

  • Rhee, Seunghyun;Jeong, Byeong Guk;Roh, Jeongkyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.249-254
    • /
    • 2022
  • To achieve high-performance colloidal quantum dot light-emitting diodes (QD-LEDs), the use of a densely packed QD film is crucial to prevent the formation of leakage current pathways and increase in interface resistance. Spin coating is the most common method to deposit QDs; however, this method often produces pinholes that can act as short-circuit paths within devices. Since state-of-the-art QD-LEDs typically employ mono- or bi-layer QDs as an emissive layer because of their low conductivities, the use of a densely packed and pinhole-free QD film is essential. Herein, we introduce the Langmuir-Blodgett (LB) technique as a deposition method for the fabricate densely packed QD films in QD-LEDs. The LB technique successfully transfers a highly dense monolayer of QDs onto the substrate, and multilayer deposition is performed by repeating the transfer process. To validate the comparability of the LB technique with the standard QD-LED fabrication process, we fabricate and compare the performance of LB-based QD-LEDs to that of the spin-coating-based device. Owing to the non-destructiveness of the LB technique, the electroluminescence efficiency of the LB-based QD-LEDs is similar to that of the standard spin coating-based device. Thus, the LB technique is promising for use in optoelectronic applications.

Improved charge balance in quantum dot light-emitting diodes using self-assembled monolayer (자기조립단분자막을 이용한 양자점 발광다이오드의 전하 균형도 개선)

  • Sangwook Park;Woon Ho Jung;Yeyun Bae;Jaehoon Lim;Jeongkyun Roh
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2023
  • To improve the efficiency and stability of colloidal quantum dot light-emitting diodes (QD-LEDs), it is essential to achieve charge balance within the QD emissive layer. Zinc oxide (ZnO) is widely used for constructing an electron transport layer in the state-of-the-art QD-LEDs, but spontaneous electron injection from ZnO often results in excessive electrons in QDs that significantly deteriorate the performance of QD-LEDs. In this study, we demonstrated the improved performance of QD-LEDs by modifying the electron injection property of ZnO with self-assembled monolayer (SAM)-treatment. As a result of improved charge balance, the external quantum efficiency and maximum luminance of QD-LEDs with SAM-treatment were improved by 25% and 200%, respectively, compared to the devices without SAM-treatment.