DOI QR코드

DOI QR Code

Effects of Various Intensities and Wavelengths of Light Emitting Diodes (LEDs) on the Growth of the Prasinophytes Tetraselmis suecica and T. tetrathele

담녹조강 Tetraselmis suecica 및 Tetraselmis tetrathele의 생장에 미치는 발광다이오드(Light-Emitting Diodes; LEDs) 광량과 파장의 영향

  • Han, Kyong Ha (Department of Oceanography, Pukyong National University) ;
  • Oh, Seok Jin (Department of Oceanography, Pukyong National University)
  • Received : 2017.11.27
  • Accepted : 2017.12.31
  • Published : 2018.02.28

Abstract

This study was conducted to investigate the effects of light intensity and wavelength on the growth of Tetraselmis suecica and Tetraselmis tetrathele. These species were exposed to a blue light-emitting diode (LED; max=450 nm), a yellow LED (max=590 nm), a red LED (max=630 nm) and a fluorescent lamp (three wavelengths). The maximum growth rates (${\mu}_{max}$) of T. suecica and T. tetrathele under a red LED were 1.12/day and 0.95/day, respectively. Under a yellow LED, growth rates were 70% of the values for red wavelength, with low half-saturation constants (Ks). The optimum light source to ensure economically effective and productive growth in a Tetraselmis culture system (Photo-Bioreactor) would thus appear to be a three-phase culture, wherein a yellow LED is used during the lag phase and initial exponential phase to increase growth rate, followed by a red LED during the middle exponential phase to maximize growth rate, and finally a yellow LED again during the late exponential phase and stationary phase to achieve increased yield of useful bioactive substances.

Keywords

References

  1. Abiusi F, Sampietro G, Marturano G, Biondi N, Rodolfi L, D'Ottavio M and Tredici MR. 2014. Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors. Biotechnol Bioeng 111, 956-964. https://doi.org/10.1002/bit.25014.
  2. Aguilera J, Francisco J, Gordillo L, Karsten U, Figueroa FL and Niell FX. 2000. Light quality effect on photosynthesis and efficiency of carbon assimilation in the red alga Porphyra leucosticta. J Plant Physiology 157, 86-92. https://doi.org/10.1016/s0176-1617(00)80140-6.
  3. An HC, Bae JH, Kwon ON, Park HG and Park JC. 2014. Changes in the growth and biochemical composition of Chaetoceros calcitrans cultures using light-emitting diodes. J Korean Soc Fish Technol 50, 447-54. https://doi.org/10.3796/ksft.2014.50.4.447.
  4. Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D and Tredici MR. 2012. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour Technol 114, 567-72. https://doi.org/10.1016/j.biortech.2012.02.123.
  5. Brand LE, Guillard RR and Murphy LS. 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J Plankton Res 3, 193-201. https://doi.org/10.1093/plankt/3.2.193.
  6. Chen HB, Wu JY, Wang CF, Fu CC, Shieh CJ, Chen CI and Liu YC. 2010. Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53, 52-56. https://doi.org/10.1016/j.bej.2010.09.004.
  7. Chisti Y. Biodiesel from microalgae. 2007. Biotechnol Adv 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001.
  8. Choi HW and Ko JH. 2013. Analysis of luminous characteristics of white LEDs depending on yellow phosphors. Korean J Opt Photon 24, 64-70. http://dx.doi.org/10.3807/KJOP.2013.24.2.064.
  9. del Pilar Sanchez-Saavedra M and Voltolina D. 1996. Effect of blue-green light on growth rate and chemical composition of three diatoms. J Appl Phycol 8, 131-7. https://doi.org/10.1007/bf02186316.
  10. del Pilar Sanchez-Saavedra M and Voltolina D. 2006. The growth rate, biomass production and composition of Chaetoceros sp. grown with different light sources. Aquacult Eng 35, 161-5. https://doi.org/10.1016/j.aquaeng.2005.12.001.
  11. Egeland ES, Eikrem W, Throndsen J, Wilhelm C, Zapata M and Liaaen-Jensen S. 1995. Carotenoids from further prasinophytes. Biochem Syst Ecol 23, 745-755.
  12. Fernandez FA, Sevilla JF, Egorova-Zachernyuk T and Grima EM. 2005. Cost-effective production of 13 C, 15 N stable isotope-labelled biomass from phototrophic microalgae for various biotechnological applications. Biomol Eng 22, 193-200. https://doi.org/10.1016/j.bioeng.2005.09.002.
  13. Figueroa FL, Aguilera J and Niell FX. 1994. Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis. Eur J Phycol 30, 11-18. https://doi.org/10.1080/09670269500650761.
  14. Figueroa FL, Aguilera J and Niell FX. 1995. Red and blue light regulation of growth and photosynthetic metabolism in Porphyta umbilicalis (Bangiales Rhodophyta). Eur J Phycol 30, 11-18. https://doi.org/10.1007/978-1-4615-3366-5_72.
  15. Fu W, Guomundsson O, Paglia G, Herjolfsson G, Andresson OS, Palsson BO and Brynjolfsson S. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol 97, 2395-403. https://doi.org/10.1007/s00253-012-4502-5.
  16. Garrido JL, Rodriguez F and Zapata M. 2009. Occurrence of loroxanthin, loroxanthin decenoate, and loroxanthin dodecenoate in Tetraselmis species (Prasinophyceae, Chlorophyta). J Phycol 45, 366-374. https://doi.org/10.1111/j.1529-8817.2009.00660.x.
  17. Gomez PI and Gonzalez MA. 2004. Genetic variation among seven strains of Dunaliella salina (chlorophyta) with industrial potential, based on RAPD banding patterns and on nuclear ITS rDNA sequences. Aquaculture 233, 149-62. https://doi.org/10.1016/j.aquaculture.2003.11.005.
  18. Guillard RR and Ryther JH. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (CLEVE) gran. Can J Microbiol 8, 229-39. https://doi.org/10.1139/m62-029.
  19. Huerlimann R, De NR and Heimann K. 2010. Growth, lipid content, productivity and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107, 245-57. https://doi.org/10.1002/bit.22809.
  20. Katsuda T, Lababpour A, Shimahara K and Katoh S. 2004. Astaxanthin production by Haematococcus plucialis under illumination with LEDs. Enzyme Microb Technol 35, 81-86. https://doi.org/10.1016/j.enzmictec.2004.03.016.
  21. Kwon HK. 2013. A study on phytoremediation of eutrophic coastal sediments using benthic microalgae and light emitting diode. Ph.D Thesis, Pukyong National University, Busan, Korea.
  22. Ladygina N, Dedyukhina EG and Vainshtein MB. 2006. A review on microbial synthesis of hydrocarbons. Process Biochem 41, 1001-14. https://doi.org/10.1016/j.procbio.2005.12.007.
  23. Latasa M, Scharek R, Gall FL and Guillou L. 2004. Pigment suites and taxonomic groups in Prasinophyceae. J Phycol 40, 1149-1155. https://doi.org/10.1111/j.1529-8817.2004.03136.x.
  24. Lederman T and Tett P. 1981. Problems in modelling the photosynthesis- light relationship for phytoplankton. Bot Mar 24, 125-34. https://doi.org/10.1515/botm.1981.24.3.125.
  25. Lee CG and Palsson BO. 1994. High-density algal photobioreactors using Light-Emitting Diodes. Biotech Bioeng 44, 1161-1167. https://doi.org/10.1002/bit.260441002.
  26. Lee YJ, Lee CH, Cho KC, Moon HN, Namgung J, Kim KH, Lim BJ, Kim DK and Yeo IK. 2017. Effect of Temperature-induced Two-stage Cultivation on the Lipid and Saccharide Accumulation of Microalgae Chlorella vulgaris and Dunaliella salina. Korean J Aquat Sci 50, 32-40. https://doi.org/10.5657/kfas.2017.0032.
  27. McHugh DJ. 2003. A guide to the seaweed industry. Food and Agriculture Organization of the United Nations Rome.
  28. Moheimani NR. Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp. (chlorophyta) grown outdoors in bag photobioreactors. 2013. J Appl Phycol 25, 387-98. https://doi.org/10.1007/s10811-012-9873-6.
  29. Mouget JL, Rosa P and Tremblin G. 2004. Acclimation of Haslea ostrearia to light of different spectral qualities confirmation of chromatic adaptation in diatoms. J Photochem Photobiol B 75, 1-11. https://doi.org/10.1016/j.jphotobiol.2004.04.002.
  30. Oh SJ, Kwon HK, Jeon JY and Yang HS. 2015. Effect of Monochromatic Light Emitting Diode on the Growth of Four Microalgae Species (Chlorella vulgaris, Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp.). Korean Soc Mar Environ Saf 21, 1-8. https://doi.org/10.7837/kosomes.2015.21.1.001.
  31. Oh SJ, Park DS, Yang HS, Yoon, YH and Tsuneo H. 2007. Bioremediation on the Benthic Layer in Polluted Inner Bay by Promotion of Microphytobenthos Growth Using Light Emitting Diode (LED) - 1. Effects of irradiance and wavelength on the growth of benthic diatom, Nitzschia sp. J Korean Soc Mar Environ Energy 10, 93-101.
  32. Organelli E, Nuccio C, Lazzara L, Uitz J, Bricaud A and Massi L. 2017. On the discrimination of multiple phytoplankton groups from light absorption spectra of assemblages with mixed taxonomic composition and variable light conditions. Applied Optics 56, 3952-3968. https://doi.org/10.1364/ao.56.003952.
  33. Park HJ, Jin EJ, Jung TM, Joo H and Lee JH. 2010. Optimal culture conditions for photosynthetic microalgae Nannochloropsis oculata. App Chem Eng 21, 659-663.
  34. Pulz O and Gross W. 2004. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65, 635-48. https://doi.org/10.1007/s00253-004-1647-x.
  35. Ra CH, Kang CH, Jung JH, Jeong GT and Kim SK. 2016. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresour technol 212, 254-261. https://doi.org/10.1016/j.biortech.2016.04.059.
  36. Raja R, Hemaiswarya S and Rengasamy R. 2007. Exploitation of Dunaliella for $\beta$-carotene production. Appl Microbiol Biotechnol 74, 517-23. https://doi.org/10.1007/s00253-006-0777-8.
  37. Reitan KI, Rainuzzo JR and Olsen Y. 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30, 972-9. https://doi.org/10.1111/j.0022-3646.1994.00972.x.
  38. Rocha JM, Garcia JE and Henriques MH. 2003. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol Eng 20, 237-42. https://doi.org/10.1016/s1389-0344(03)00061-3.
  39. Saavedra, MDPS and Voltolina D. 1994. The chemical composition of Chaetoceros sp.(bacillariophyceae) under different light conditions. Comp Biochem and Physiol B: Comp Biochem 107, 39-44. https://doi.org/10.1016/0305-0491(94)90222-4.
  40. Sathyendranath S, Lazzara L and Prieur L. 1987. Variations in the spectral values of specific absorption of phytoplankton. Limnol Oceanogr 32, 403-415. https://doi.org/10.4319/lo.1987.32.2.0403.
  41. Satyanarayana, KG, Mariano AB and Vargas JVC. 2011. A review on microalgae, a versatile source for sustainable energy and materials. International Journal of energy research 35, 291-311. https://doi.org/10.1002/er.1695.
  42. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O and Hankamer B. 2008. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res 1, 20-43. https://doi.org/10.1007/s12155-008-9008-8.
  43. Schulze PS, Pereira HG, Santos TF, Schueler L, Guerra R, Barreira LA and Varela JC. 2016. Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Res 16, 387-398. https://doi.org/10.1016/j.algal.2016.03.034.
  44. Shih SC, Mufti NS, Chamberlain MD, Kim J and Wheeler AR. 2014. A droplet-based screen for wavelength-dependent lipid production in algae. Energy Environ Sci 7, 2366-75. https://doi.org/10.1039/c4ee01123f.
  45. Spolaore P, Joannis-Cassan C, Duran E and Isambert A. 2006. Commercial applications of microalgae. J Biosci Bioeng 101, 87-96. https://doi.org/10.1263/jbb.101.87
  46. Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou JS and Syu RJ. 2011. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23, 903-908. https://doi.org/10.1007/s10811-010-9609-4.
  47. Takano H, Arai T, Hirano M and Matsunaga T. 1995. Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Appl Microbiol Biotechnol 43, 1014-8. https://doi.org/10.1007/bf00166918.
  48. Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM and Idris A. 2014. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresour Technol 162, 38-44. https://doi.org/10.1016/j.biortech.2014.03.113.
  49. Vasudevan PT and Briggs M. 2008. Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol 35, 421. https://doi.org/10.1007/s10295-008-0312-2.
  50. Vesk M and Jeffrey SW. 1977. Effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes. J Phycol 13, 280-8. https://doi.org/10.1111/j.1529-8817.1977.tb02928.x.
  51. Wang CY, Fu CC and Liu YC. 2007. Effects of using light-emitting diodes on the cultivation of spirulina platensis. Biochem Eng J 37, 21-5. https://doi.org/10.1016/j.bej.2007.03.004.
  52. Whyte JN. 1987. Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture 60, 231-41. https://doi.org/10.1016/0044-8486(87)90290-0.
  53. Xia L, Rong J, Yang H, He Q, Zhang D and Hu C. 2014. NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans. Bioresource Technol 161, 402-409. http://dx.doi.org/10.1016/j.biortech.2014.03.063.
  54. Xue S, Su Z and Cong W. 2011. Growth of Spirulina platensis enhanced under intermittent illumination. J Biotech 151, 271-277. https://doi.org/10.1016/j.jbiotec.2010.12.012.