• Title/Summary/Keyword: Light Detection and Ranging (LIDAR)

Search Result 69, Processing Time 0.025 seconds

A Method development of Power Line Location and 3D Modeling using LiDAR Data (라이다 데이터를 이용한 송전선로 위치 추출 및 3차원 모델링 기법 개발)

  • Kim, Eun-Young;Kim, Seong-Yong;Lee, Kang-Won
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.389-393
    • /
    • 2007
  • There has been many researches using LiDAR(Light Detection And Ranging) data. There has been many other researches through out the world using the 3 dimensional spatial data in various fields. In this research, Using lidar data and digital images, we have extracted the position of the power-transmission line and created 3 dimensional models. The presented method is more efficient than field surveying and it can also be used lot monitoring change in the environment

  • PDF

Real-Time Terrain Rendering Framework for GIS Applications

  • Kang, Dong-Soo;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Real-time 3D visualization of terrain data is one of the important issues in GIS(Geographic Information System) field. We present a real-time terrain rendering engine that can use several types of GIS data source such as DEM(Digital Elevation Map), DTED(Digital Terrain Elevation Data) and LIDAR(Light Detection And Ranging). Our rendering engine is a quadtree-based terrain rendering framework with several acceleration modules. This can generate an ocular and binocular image. Also it can be applied to the flight simulation, walk-through simulation and a variety of GIS applications.

  • PDF

Investigation of Airborne LIDAR Intensity data

  • Chang Hwijeong;Cho Woosug
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.646-649
    • /
    • 2004
  • LiDAR(Light Detection and Ranging) system can record intensity data as well as range data. Recently, LiDAR intensity data is widely used for landcover classification, ancillary data of feature extraction, vegetation species identification, and so on. Since the intensity return value is associated with several factors, same features is not consistent for same flight or multiple flights. This paper investigated correlation between intensity and range data. Once the effects of range was determined, the single flight line normalization and the multiple flight line normalization was performed by an empirical function that was derived from relationship between range and return intensity

  • PDF

Wideband Receiver Module for LADAR Using Large Area InGaAs Avalanche Photodiode (대면적 APD를 이용한 LADAR용 광대역 광수신기)

  • Park, Chan-Yong;Kim, Dug-Bong;Kim, Chung-Hwan;Kwon, Yongjoon;Kang, EungCheol;Lee, Changjae;Choi, Soon-Gyu;La, Jongpil;Ko, Jin Sin
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper, we report design, fabrication and characterization of the WBRM (Wide Band Receiver Module) for LADAR (LAser Detection And Ranging) application. The WBRM has been designed and fabricated using self-made APD (Avalanche Photodiode) and TIA (Trans-impedance Amplifier). The APD and TIA chips have been integrated on 12-pin TO8 header using self-made ceramic submount and circuit. The WBRM module showed 450 ps of rise time, and corresponding 780 MHz bandwidth. Furthermore, it showed very low output noise less than 0.8 mV, and higher SNR than 15 for 150 nW of MDS(Minimum Detectable Signal). To the author's knowledge, this is the best performance of an optical receiver module for LIDAR fabricated by 200 um InGaAs APD.

APPLICATION OF DEMs OF LIDAR DATA IN HYDROLOGY MODELING

  • Son Min-Ho;Lee Woo-Kyun;Kwak Doo-Ahn
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.519-521
    • /
    • 2005
  • In recent years, LiDAR(Light Detection and Ranging) data has been widely used to prepare digital elevation models(DEMs) with the high spatial resolution of centi-meters. This paper investigated possible applications of LiDAR-derived DEMs in surface hydrology modeling, such as characterizing flow direction, identifying sub-basins in a watershed, and calculating variables like upstream contribution area. The results were compared to the results of the DEMs from conventional topographic maps.

  • PDF

A study on Optimal Sensor Placement using 3D information of LiDAR (LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정 가능성 분석)

  • Yu, Han-Seo;Lee, Woo-Kyun;Choi, Sung-Ho;Kang, Byoung-Jin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.244-245
    • /
    • 2009
  • 일반적으로 LiDAR(Light Detection And Ranging)의 자료로부터 3차원 위치정보와 속성 정보를 취득하여 활용 하는 연구가 많이 진행되고 있다. 본 연구에서는 Grid($100m{\times}100m$) 기반인 2차원적 Grid Point를 통해 Sensor Field를 정하고 LiDAR의 3차원적 좌표정보를 이용하여 최적 센서 위치를 선정하고 중간에 장애물(Obstacle)이 존재하는 경우 또한 알고리즘을 통해 최적위치인 Grid point를 선정하였다. 알고리즘은 3가지 측면을 고려하여 분류하였다. 첫째 장애물이 없는(Non Obstacle) 2차원적인 경우, 둘째 장애물이 존재(Obstacle)하는 2차원적인 경우, 셋째 장애물이 존재(Obstacle)하며 3차원적인 알고리즘을 고려하였다. 향후 연구에서는 LiDAR를 직접 적용하여 최적 선정 지역을 도출하여 알고리즘을 적용할 것이다.

  • PDF

Modelling of Aerosol Vertical Distribution during a Spring Season at Gwangju, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The vertical distributions of aerosol extinction coefficient were estimated using the scaling height retrieved at Gwangju, Korea ($35.23^{\circ}N$, $126.84^{\circ}E$) during a spring season (March to May) of 2009. The aerosol scaling heights were calculated on a basis of the aerosol optical depth (AOD) and the surface visibilities. During the observation period, the scaling heights varied between 3.55 km and 0.39 km. The retrieved vertical profiles of extinction coefficient from these scaling heights were compared with extinction profile derived from the Light Detection and Ranging (LIDAR) observation. The retrieve vertical profiles of aerosol extinction coefficient were categorized into three classes according to the values of AODs and the surface visibilities: (Case I) the AODs and the surface visibilities are measured as both high, (Case II) the AODs and the surface visibilities are both lower, and (Others) the others. The averaged scaling heights for the three cases were $3.09{\pm}0.46km$, $0.82{\pm}0.27km$, and $1.46{\pm}0.57km$, respectively. For Case I, differences between the vertical profile retrieved from the scaling height and the LIDAR observation was highest. Because aerosols in Case I are considered as dust-dominant, uplifted dust above planetary boundary layer (PBL) was influenced this discrepancy. However, for the Case II and other cases, the modelled vertical aerosol extinction profiles from the scaling heights are in good agreement with the results from the LIDAR observation. Although limitation in the current modelling of vertical structure of aerosols exists for aerosol layers above PBL, the results are promising to assess aerosol profile without high-cost instruments.

Daytime Temperature Measuring LIDAR System by Using Rotational Raman Signal (회전 라만 신호를 이용한 낮 시간 온도측정 라이다)

  • Yoon, Moonsang;Kim, Dukhyeon;Park, Sunho;Sin, MyeongJae;Kim, Yonggi;Jung, Haedoo
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.159-166
    • /
    • 2012
  • We have developed a daytime measuring rotational Raman LIDAR system for temperature measurement. To decrease the background signal from sunlight, we have designed and installed narrow band (0.5 nm) and high rejection ($10^{-6}$) rate band pass filter system using a grating and an interference filter. We calibrated our system by comparing our horizontal temperature profile and KMA (Korea Meteorological Administration) data. We have found that our temperature profile has a good correlation with KMA data within our theoretically expected variance. And we have used these calibration values in obtaining a vertical temperature distribution. To check our system, we also have compared our vertical temperature data with US standard atmospheric temperature profile. We also have compared our temperature profile with sonde data.

Automatic 3D Symbol Mapping Techniques for Construction of 3D Digital Map

  • Park, Seung-Yong;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.106-109
    • /
    • 2006
  • Over the years, many researches have been performed to create 3D digital maps. Nevertheless, it is still time-consuming and involves a high cost because a large part of 3D digital mapping is conducted manually. To compensate this limitation, we propose methodologies to represent 3D objects as 3D symbols and locate these symbols into a base map automatically. First of all, we constructed the 3D symbol library to represent 3D objects as 3D symbols. In the 3D symbol library, the attribute and geometry information are stored, which defines factors related to the types of symbols and related to the shapes respectively. These factors were used to match 3D objects and 3D symbols. For automatic mapping of 3D symbols into a base map, we used predefined parameters such as the size, the height, the rotation angle and the center of gravity of 3D objects which are extracted from Light Detection and Ranging (LIDAR) data and 2D digital maps. Finally, the 3D map in urban area was constructed and the mapping results were tested using aerial photos as reference data. Through this research, we can identify that the developed the algorithms can be used as effective techniques for 3D digital cartographic techniques

  • PDF

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander (달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석)

  • Lee, Choong-Min;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.