DOI QR코드

DOI QR Code

Daytime Temperature Measuring LIDAR System by Using Rotational Raman Signal

회전 라만 신호를 이용한 낮 시간 온도측정 라이다

  • Yoon, Moonsang (Department of Physics, Kongju National University) ;
  • Kim, Dukhyeon (Division of Cultural Studies, Hanbat National University) ;
  • Park, Sunho (Division of Cultural Studies, Hanbat National University) ;
  • Sin, MyeongJae (Division of Cultural Studies, Hanbat National University) ;
  • Kim, Yonggi (Department of Physics, Kongju National University) ;
  • Jung, Haedoo (Division of Cultural Studies, Hanbat National University)
  • Received : 2012.06.08
  • Accepted : 2012.07.02
  • Published : 2012.08.25

Abstract

We have developed a daytime measuring rotational Raman LIDAR system for temperature measurement. To decrease the background signal from sunlight, we have designed and installed narrow band (0.5 nm) and high rejection ($10^{-6}$) rate band pass filter system using a grating and an interference filter. We calibrated our system by comparing our horizontal temperature profile and KMA (Korea Meteorological Administration) data. We have found that our temperature profile has a good correlation with KMA data within our theoretically expected variance. And we have used these calibration values in obtaining a vertical temperature distribution. To check our system, we also have compared our vertical temperature data with US standard atmospheric temperature profile. We also have compared our temperature profile with sonde data.

본 연구에서는 질소와 산소의 회전 라만 신호를 측정하여 낮 시간 온도 측정이 가능한 라이다 시스템을 자체 개발하였다. 태양광에 의한 배경신호를 줄이기 위하여 파장의 폭이 좁고(0.5 nm) 제거율이 높은($10^{-6}$) 회절판과 간섭필터를 이용하였다. 개발된 장치의 성능을 검증하기 위하여 라이다를 수평방향으로 조사하여 온도 특성을 얻고 기상청에서 주어지는 값과 비교하여 상관관계가 일치함을 알 수 있었다. 그리고 수직온도분포로 얻기 위하여 수평으로 얻은 검정 값을 사용하였다. 또한 수직방향으로 조사하여 미국 표준 데이터와 비교하였으며, 존데 데이터와 검정을 통한 본 연구의 결과를 비교하였다.

Keywords

References

  1. S. H. Melfi, "Remote measurements of the atmosphere using raman scattering," Appl. Opt. 11, 1605-1610 (1972). https://doi.org/10.1364/AO.11.001605
  2. J. Mao, L. Hu, D. Hua, F. Gao, and M. Wu, "Pure rotational raman LIDAR with fiber bragg grating for temperature profiling of the atmospheric boundary layer," Opt. Applicata 38, 715-726 (2008).
  3. M. Radlach, A. Behrendt, and V. Wulfmeyer, "Scanning rotational raman LIDAR at 355 nm for the measurement of tropospheric temperature fields," Atmos. Chem. Phys. 8, 159 (2008).
  4. A. Behrendt and J. Reichardt, "Atmospheric temperature profiling in the presence of clouds with a pure rotational raman LIDAR by use of an interference-filter-based polychromator," Appl. Opt. 39, 1372-1378 (2000). https://doi.org/10.1364/AO.39.001372
  5. J. Zeyn, W. Lahmann, and C. Weikamp, "Remote daytime measurements of tropospheric temperature profiles with a rotational raman LIDAR," Pot. Lett. 21, 1301 (1996).
  6. P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, "Rotation raman LIDAR measurements of atmospheric temperature in the UV," Geophys. Res. Letters 31, 1106 (2004). https://doi.org/10.1029/2003GL018342
  7. D. Kim, H. Cha, J. Lee, and S. Bobronikov, "Pure rotational Raman LIDAR for atmospheric temperature measurements," J. Korean Phys. Soc. 39, 838 (2001).
  8. D. Kim, S. Park, H. Cha, J. Zhou, and W. Zhang, "New multi-quantum number rotational Raman LIDAR for obtaining temperature and aerosol extinction and backscattering scattering coefficients," Appl. Phys. 82, 1-4 (2006).
  9. M. R. Gross, T. J. McGee, R. A. Ferrare, U. N. Singh, and P. Kimvilakani, "Temperature measurements made with a combined Rayleigh-Mie and raman LIDAR," Appl. Opt. 36, 24 (1997).
  10. G. Baumgarten, "Twin Doppler Rayleigh/Mie/Raman LIDAR for wind and temperature measurements in the middle atmosphere up to 80 km," Atmos. Meas. Tech. Discuss. 3, 2779 (2010). https://doi.org/10.5194/amtd-3-2779-2010
  11. M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Hoffner, "Temperature LIDAR measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering," Atmos. Meas. Tech. Discuss. 4, 923 (2004).
  12. G. Baumgarten, "Dopper Rayleigh/Mie/Raman LIDAR for wind and temperature measurements in the middle atmosphere up to 80 km," Atmos. Meas. Tech. Discuss. 3, 1509 (2010). https://doi.org/10.5194/amt-3-1509-2010
  13. K. V. Chance and R. J. D. Spurr, "Ring effect studies : Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum," Appl. Opt. 36, 5224 (1997). https://doi.org/10.1364/AO.36.005224
  14. W. Huang, W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, "Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge maneto-optic filter in a multi-frequency Dopper LIDAR," Opt. Lett. 34, 1552 (2009). https://doi.org/10.1364/OL.34.001552
  15. A. J. Mcdonald, Botan, and X. Chu, "Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COMIC/FORMOSAT-3 and Rayleigh LIDAR observations," Geophys. Res. 115, 19128 (2010). https://doi.org/10.1029/2009JD013658
  16. X. Chu, "Temperature LIDAR (6) integration technique," http://superLIDAR.colorado.edu/Classes/LIDAR2011/LIDARLecture16.pdf (2011).
  17. A. Cohen, M. Kleiman, and J. Cooney, "LIDAR measurements of rotational raman and double scattering," Appl. Opt. 17, 1905-1910 (1978). https://doi.org/10.1364/AO.17.001905
  18. J. E. Kalshoven Jr., C. L. Korb, G. K. Schwemmer, and M. Dombrowski, "Laser remote sensing of atmospheric temperature by observing resonant absorption of oxygen," Appl. Opt. 20, 1967-1971 (1981). https://doi.org/10.1364/AO.20.001967
  19. M. Endemann and R. L. Byer, "Simultaneous measurements of atmospheric temperature and humidity using a continously tunable IR LIDAR," Appl. Opt. 20, 3211 (1981). https://doi.org/10.1364/AO.20.003211
  20. C. G. Park, J. H. Baek, and J. H. Cho, "Analysis on characteristics of radiosonde bias using GPS precipitable water vapor," J. Astron. Space Sci. 27, 213-220 (2010). https://doi.org/10.5140/JASS.2010.27.3.213
  21. J. Ha and K. D. Park, "Estimation of water vapor vertical profiles in the atmosphere using GPS measurements," Atmosphere 19, 289-296 (2009).
  22. D. Renaut and R. Capitini, "Boundary-layer water vapor probing with a solar-blind Raman LIDAR: validations, meteorological observations and prospects," J. Atmos. Ocean. Technol. 5, 585 (1988). https://doi.org/10.1175/1520-0426(1988)005<0585:BLWVPW>2.0.CO;2
  23. D. H. Kim, H. K. Cha, and S. Bobronikov, "Measurement of aerosol backscattering coefficient using multichannel rotational raman scattering," J. Korean Phys. Soc. 39, 838 (2001).
  24. D. Hua, J. Liu, K. Uchida, and T. Kobayashi, "Daytime temperature profiling of planetary boundary layer with ultraviolet rotational raman LIDAR," Appl. Phys. 46, 5849-5852 (2007).
  25. A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, "LIDAR monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. 55, 29-34 (1992). https://doi.org/10.1007/BF00348609
  26. M. Jiandong, X. Zhen, W. Min, H. Dengxin, and G. Fei, "Ultraviolet rotational raman LIDAR for high accuracy temperature profiling of the planetary boundary layer," Proc. SPIE 7130, 71301E, 1-6 (2008).
  27. D. Kim and H. Cha, "Rotational Raman LIDAR: design and performance test of meteorological parameters (aerosol backscattering coefficients and temperature)," J. Korean Phys. Soc. 51, 352 (2007). https://doi.org/10.3938/jkps.51.352
  28. D. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, "Rotational raman LIDAR to measure the atmospheric temperature from the ground to 30 km," IEEE Trans. Geosci. Remote Sens. 31, 1 (1993).
  29. D. Kim, S. Kwon, H. Cha, Y. Kim, and J. Sunwoo, "A newly designed single etalon double edge Doppler wind LIDAR receiving optical system," Rev. Sci. instrum. 19, 123111 (2008).

Cited by

  1. Observation and analysis of the temperature inversion layer by Raman lidar up to the lower stratosphere vol.54, pp.34, 2015, https://doi.org/10.1364/AO.54.010079