References
- S. H. Melfi, "Remote measurements of the atmosphere using raman scattering," Appl. Opt. 11, 1605-1610 (1972). https://doi.org/10.1364/AO.11.001605
- J. Mao, L. Hu, D. Hua, F. Gao, and M. Wu, "Pure rotational raman LIDAR with fiber bragg grating for temperature profiling of the atmospheric boundary layer," Opt. Applicata 38, 715-726 (2008).
- M. Radlach, A. Behrendt, and V. Wulfmeyer, "Scanning rotational raman LIDAR at 355 nm for the measurement of tropospheric temperature fields," Atmos. Chem. Phys. 8, 159 (2008).
- A. Behrendt and J. Reichardt, "Atmospheric temperature profiling in the presence of clouds with a pure rotational raman LIDAR by use of an interference-filter-based polychromator," Appl. Opt. 39, 1372-1378 (2000). https://doi.org/10.1364/AO.39.001372
- J. Zeyn, W. Lahmann, and C. Weikamp, "Remote daytime measurements of tropospheric temperature profiles with a rotational raman LIDAR," Pot. Lett. 21, 1301 (1996).
- P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, "Rotation raman LIDAR measurements of atmospheric temperature in the UV," Geophys. Res. Letters 31, 1106 (2004). https://doi.org/10.1029/2003GL018342
- D. Kim, H. Cha, J. Lee, and S. Bobronikov, "Pure rotational Raman LIDAR for atmospheric temperature measurements," J. Korean Phys. Soc. 39, 838 (2001).
- D. Kim, S. Park, H. Cha, J. Zhou, and W. Zhang, "New multi-quantum number rotational Raman LIDAR for obtaining temperature and aerosol extinction and backscattering scattering coefficients," Appl. Phys. 82, 1-4 (2006).
- M. R. Gross, T. J. McGee, R. A. Ferrare, U. N. Singh, and P. Kimvilakani, "Temperature measurements made with a combined Rayleigh-Mie and raman LIDAR," Appl. Opt. 36, 24 (1997).
- G. Baumgarten, "Twin Doppler Rayleigh/Mie/Raman LIDAR for wind and temperature measurements in the middle atmosphere up to 80 km," Atmos. Meas. Tech. Discuss. 3, 2779 (2010). https://doi.org/10.5194/amtd-3-2779-2010
- M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Hoffner, "Temperature LIDAR measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering," Atmos. Meas. Tech. Discuss. 4, 923 (2004).
- G. Baumgarten, "Dopper Rayleigh/Mie/Raman LIDAR for wind and temperature measurements in the middle atmosphere up to 80 km," Atmos. Meas. Tech. Discuss. 3, 1509 (2010). https://doi.org/10.5194/amt-3-1509-2010
- K. V. Chance and R. J. D. Spurr, "Ring effect studies : Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum," Appl. Opt. 36, 5224 (1997). https://doi.org/10.1364/AO.36.005224
- W. Huang, W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, "Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge maneto-optic filter in a multi-frequency Dopper LIDAR," Opt. Lett. 34, 1552 (2009). https://doi.org/10.1364/OL.34.001552
- A. J. Mcdonald, Botan, and X. Chu, "Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COMIC/FORMOSAT-3 and Rayleigh LIDAR observations," Geophys. Res. 115, 19128 (2010). https://doi.org/10.1029/2009JD013658
- X. Chu, "Temperature LIDAR (6) integration technique," http://superLIDAR.colorado.edu/Classes/LIDAR2011/LIDARLecture16.pdf (2011).
- A. Cohen, M. Kleiman, and J. Cooney, "LIDAR measurements of rotational raman and double scattering," Appl. Opt. 17, 1905-1910 (1978). https://doi.org/10.1364/AO.17.001905
- J. E. Kalshoven Jr., C. L. Korb, G. K. Schwemmer, and M. Dombrowski, "Laser remote sensing of atmospheric temperature by observing resonant absorption of oxygen," Appl. Opt. 20, 1967-1971 (1981). https://doi.org/10.1364/AO.20.001967
- M. Endemann and R. L. Byer, "Simultaneous measurements of atmospheric temperature and humidity using a continously tunable IR LIDAR," Appl. Opt. 20, 3211 (1981). https://doi.org/10.1364/AO.20.003211
- C. G. Park, J. H. Baek, and J. H. Cho, "Analysis on characteristics of radiosonde bias using GPS precipitable water vapor," J. Astron. Space Sci. 27, 213-220 (2010). https://doi.org/10.5140/JASS.2010.27.3.213
- J. Ha and K. D. Park, "Estimation of water vapor vertical profiles in the atmosphere using GPS measurements," Atmosphere 19, 289-296 (2009).
- D. Renaut and R. Capitini, "Boundary-layer water vapor probing with a solar-blind Raman LIDAR: validations, meteorological observations and prospects," J. Atmos. Ocean. Technol. 5, 585 (1988). https://doi.org/10.1175/1520-0426(1988)005<0585:BLWVPW>2.0.CO;2
- D. H. Kim, H. K. Cha, and S. Bobronikov, "Measurement of aerosol backscattering coefficient using multichannel rotational raman scattering," J. Korean Phys. Soc. 39, 838 (2001).
- D. Hua, J. Liu, K. Uchida, and T. Kobayashi, "Daytime temperature profiling of planetary boundary layer with ultraviolet rotational raman LIDAR," Appl. Phys. 46, 5849-5852 (2007).
- A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, "LIDAR monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. 55, 29-34 (1992). https://doi.org/10.1007/BF00348609
- M. Jiandong, X. Zhen, W. Min, H. Dengxin, and G. Fei, "Ultraviolet rotational raman LIDAR for high accuracy temperature profiling of the planetary boundary layer," Proc. SPIE 7130, 71301E, 1-6 (2008).
- D. Kim and H. Cha, "Rotational Raman LIDAR: design and performance test of meteorological parameters (aerosol backscattering coefficients and temperature)," J. Korean Phys. Soc. 51, 352 (2007). https://doi.org/10.3938/jkps.51.352
- D. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, "Rotational raman LIDAR to measure the atmospheric temperature from the ground to 30 km," IEEE Trans. Geosci. Remote Sens. 31, 1 (1993).
- D. Kim, S. Kwon, H. Cha, Y. Kim, and J. Sunwoo, "A newly designed single etalon double edge Doppler wind LIDAR receiving optical system," Rev. Sci. instrum. 19, 123111 (2008).
Cited by
- Observation and analysis of the temperature inversion layer by Raman lidar up to the lower stratosphere vol.54, pp.34, 2015, https://doi.org/10.1364/AO.54.010079