• Title/Summary/Keyword: Ligand effect

Search Result 423, Processing Time 0.026 seconds

Optical Properties of Metal Halide Perovskite Nanocrystals with Addition of Metal Bromide (금속 브롬화물의 첨가에 따른 금속 할라이드 페로브스카이트 나노결정의 광학적 특성 변화)

  • Yun, Seokjin;Choi, Jihoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.334-341
    • /
    • 2019
  • Organometal halide perovskite materials have attracted much attention in the photovoltaic and light emitting devices due to the compositional flexibility with AMX3 formula (A is an organic amine cation; M is a metal ion; X is a halogen atom). The addition of homovalent or heterovalent metal cations to the bulk organohalide perovskites has been performed to modify their energy band structure and the relevant optoelectronic properties by ligand-assisted ball milling. Here, we report CH3NH3Pb1-xMxBr3 nanocrystals substituted by metallic cations (M is Sn2+, In3+, Bi3+; x = 0, 0.01, 0.02, 0.05, 0.1, 0.2). Photoluminescence and quantum yield was significantly reduced with increasing metallic cations content. These quenching effect could be resulted from the metal cations that behave as a non-radiative recombination center.

Spectrophotometric Determination of Vanadium(IV) with 2-Hydroxybenzaldehyde-5-Nitro-pyridylhydrazone in the Presence of Sodium Dodecyl Sulfate (Sodium dodecyl sulfate에서 2-Hydroxybenzaldehyde-5-Nitro-pyridylhydrazone을 이용한 바나듐(IV)의 분광광도법 정량)

  • Park, Chan-Il;Jung, Young-Chul;Cha, Ki-Won
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • 2-Hydroxybenzaldehyde-5-Nitro-pyridylhydrazone (2HB-5NPH) was synthesized and its application in the spectrophotometric determination of vanadium ion(IV) was studied in the presence of surfactant. The optimum conditions of pH, solvent effect, concentration of ligand and surfactant were evaluated. The procedure was applied to determination of vanadium (IV) in mixture sample and real sample with satisfactory results (recovery ${\geq}$ 97% ; relative standard deviation ${\leq}$ 3.0% in the concentration range of $0{\sim}1.5{\mu}g/mL$ ; detection limit, $0.02{\mu}g/mL$ in solution).

  • PDF

Insulin-Like Growth Factor-I-Induced Androgen Receptor Activation Is Mediated by the PI3K/Akt Pathway in C2C12 Skeletal Muscle Cells

  • Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.495-499
    • /
    • 2009
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR and IGF-I in skeletal muscle cells has not been previously examined. In this study, the role of PI3K/Akt on IGF-I-induced gene expression and activation of AR in skeletal muscle cells was investigated. C2C12 cells were treated with IGF-I in the absence or presence of inhibitors of PI3K/Akt pathway (LY294002 and Wortmannin). Inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin led to a significant decrease in IGF-I-induced AR phosphorylation and total AR protein expression. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by LY294002 or Wortmannin. Confocal images showed that IGF-I-induced AR translocation from cytosol to nucleus was inhibited significantly in response to treatment with LY294002 or Wortmannin. The present results suggest that modulating effect of IGF-I on AR gene expression and activation in C2C12 mouse skeletal muscle cells is mediated at least in part by the PI3K/Akt pathway.

Optical Resolution of Dabsyl Amino Acids in Reversed-Phase Liquid Chromatography

  • Lee, Sun-Haing;Oh, Tae-Sub;Lee, Young-Cheal
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.411-415
    • /
    • 1990
  • The dabsylation of amino acids has been applied to resolve their optical isomers with the use of chiral mobile phase in high performance liquid chromatography. The dabsyl amino acids were successfully separated on reversed phase column($C_{18}$) by adding a chiral L-benzylproline-Cu(II) chelate to the mobile phase. The separation selectivity of the dabsyl amino acid enantiomers was not less than that of dansyl amino acids. The retention order of the dabsyl amino acid enantiomers was as those of the dansyl amino acid enantiomers except dabsyl threonine. The optical selectivity of the dabsyl amino acids increase with pH of the mobile phase and concentration of the chelate, but slightly decreases with concentration of buffer and organic solvent composition. However serine, methionine, valine, and leucine showed a slight decrease in the optical selectivity with increase in pH. The retention times of the dabsyl amino acids decreases with increasing pH and acetonitrile concentration but increases with the concentration of the chiral chelate added. The mechanism of the optical resolution is based on a stereospecific interaction including a intramolecular hydrophobic effect and SN-2 reactivity of the ligand exchange chromatography.It is advantageous to detect absorption at 436 nm, which is less interferent them the other detection systems. The derivatized dabsyl amino acids are stable for a month.

Recent Trend in Catalysis for Degradation of Toxic Organophosphorus Compounds (유기인 계열 독성화합물 분해를 위한 촉매반응의 최신 연구 동향)

  • Kye, Young-Sik;Jeong, Keunhong;Kim, Dongwook
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.513-522
    • /
    • 2019
  • Catalysts based on organic compounds, transition metal and metal-organic frameworks (MOFs) have been applied to degrade or remove organophosphorus toxic compounds (OPs). During the last 20 years, various MOFs were designed and synthesized to suit application purposes. MOFs with $Zr_6$ based metal node and organic linker were widely used as catalysts due to their tunability for the pore size, porosity, surface area, Lewis acidic sites, and thermal stability. In this review, effect on catalytic efficiency between MOFs properties according to the structure, stability, particle size, number of connected-ligand, organic functional group, and so on will be discussed.

Experimental Study on Structural and Functional Characteristics of Surface-Modified Porous Membrane (다공성 멤브레인의 표면 개질에 따른 구조 및 성능 특성에 대한 실험 연구)

  • Lee, Sang Hyuk;Kim, Kiwoong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • With the advances in recent nanotechnology, mass transport phenomena have been receiving large attention both in academic researches and industrial applications. Nonetheless, it is not clearly determined which parameters are dominant at nanoscale mass transport. Especially, membrane is a kind of technology that use a selective separation to secure fresh water. The development of great separation membrane and membrane-based separation system is an important way to solve existing water resource problems. In this study, glass fiber-based membranes which are treated by graphene oxide (GO), poly-styrene sulfonate (GOP) and sodium dodecyl sulfate (GPS) were fabricated. Mass transport parameters were investigated in terms of material-specific and structure-specific dominance. The 3D structural information of GO, GOP, and GPS was obtained by using synchrotron X-ray nano tomography. In addition, electrostatic characteristic and water absorption rate of the membranes were investigated. As a result, we calculated internal structural information using Tomadakis-Sotrichos model, and we found that manipulation of surface characteristics can improve spacer arm effect, which means enhancement of water permeability by control length of ligand and surface charge functionality of the membrane.

Effects of Juglans regia Complex Extract on Osteoclast Differentiation from Bone Marrow Derived Macrophage (호두복합추출물이 골수유래대식세포의 파골세포 분화에 미치는 효과)

  • Kong, Hae Jin;Kang, Jae Hui;Ryu, Hwa Yeon;Lee, Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.169-174
    • /
    • 2019
  • The purpose of this study was to evaluate the inhibitory effects of Juglans regia complex extract(JCE) consisted of Juglans regia, Eucommia ulmoides, Eleutherococcus senticosus and Zingiber officinale on osteoclast differentiation. Cell toxicity test by using CCK-8, TRAP activity and TRAP positive multi-nucleated cell counting were performed to evaluate inhibitory effect on differentiation of osteoclast from bone marrow derived macrophages(BMMs) induced by receptor activator of nuclear $factor-{\kappa}B$ ligand(RANKL). As a result, JCE inhibited RANKL-induced osteoclast differentiation in BMMs dose-dependently without cytotoxicity. These results suggest that JCE may have a potential role for treating bone lytic diseases such as osteoporosis.

27-Hydroxycholesterol induces macrophage gene expression via LXR-dependent and -independent mechanisms

  • Kim, Bo-Young;Son, Yonghae;Cho, Hyok-rae;Lee, Dongjun;Eo, Seong-Kug;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2021
  • 27-Hydroxycholesterol (27OHChol) exhibits agonistic activity for liver X receptors (LXRs). To determine roles of the LXR agonistic activity in macrophage gene expression, we investigated the effects of LXR inhibition on the 27OHChol-induced genes. Treatment of human THP-1 cells with GSK 2033, a potent cell-active LXR antagonist, results in complete inhibition in the transcription of LXR target genes (such as LXRα and ABCA1) induced by 27OHChol or a synthetic LXR ligand TO 901317. Whereas expression of CCL2 and CCL4 remains unaffected by GSK 2033, TNF-α expression is further induced and 27OHChol-induced CCL3 and CXCL8 genes are suppressed at both the transcriptional and protein translation levels in the presence of GSK 2033. This LXR antagonist downregulates transcript levels and surface expression of CD163 and CD206 and suppresses the transcription of CD14, CD80, and CD86 genes without downregulating their surface levels. GSK 2033 alone had no effect on the basal expression levels of the aforementioned genes. Collectively, these results indicate that LXR inhibition leads to differential regulation of 27-hydroxycholesterol-induced genes in macrophages. We propose that 27OHChol induces gene expression and modulates macrophage functions via LXR-dependent and -independent mechanisms.

Kinetic Studies of Reaction of Transion Metal Ion with Macrocyclic Ligands. Containing Nitrogen and Oxygen Donor Atoms (전이금속 이온과 Macrocyclic Ligand 사이의 반응에 관한 속도론적 연구 질소원자와 산소원자를 포함하는 거대고리 리간드를 중심으로)

  • Kim Jin-Ho;Cho Moon-Hwan;Hyeoun Dong-Ho;Park Hyu-Bum;Kim Si-Joong;Lee Ihn-Chong
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.418-423
    • /
    • 1990
  • The protonation constants for the macrocyclic ligands 1,15,18-triaza-3,4;12,13-dibenzo-5,8,11-trioxa cycloeicosane (NdienOdienH$_4$), 1,12,15-triaza-3,4;9,10-dibenzo-5,8-dioxa cycloheptadecane (NdienOenH$_4$), and 1,15-diaza-3,4;12,13-dibenzo-5,8,11-trioxa cycloheptadecane (NenOdienH4) have been determined by the potentiometry in aqueous solutions (25$^{\circ}C$, I = 0.1, KNO$_3$). The stability constants for complexes formed in the aqueous solution (25$^{\circ}C$, I = 0.1, KNO$_3$) between the above ligands and the metal ions (Co(Ⅱ), Ni(Ⅱ), and Cu(Ⅱ)) have been measured by potentiometry. The rate of the ligand substitution reaction was measured spectrophotometrically by the addition of aqueous solutions of ethylenediamine to the solution of the complex. From the study of the temperature effect on the rate constant (k$_{obs}$), activation parameters (E$_a$,${\{Delta}H^{\neq}$, and ${\{Delta}S^{\neq}$) have been determined. The possible mechanism for the substitution reaction is proposed.

  • PDF

Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on TRAIL-mediated Apoptosis in Human Bladder Cancer Cells (인체 방광암세포에서 histone deacetylase 억제제인 sodium butyrate이 TRAIL에 의한 apoptosis 유도에 미치는 영향)

  • Han, Min-Ho;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • The tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer agent due to its unique ability to induce cancer cell death having only negligible effects on normal cells. However, many cancer cells tend to be resistant to TRAIL. In this study, we investigated the effects and molecular mechanisms of sodium butyrate (SB), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in 5637 human bladder cancer cells. Our results indicated that co-treatment with SB and TRAIL significantly increased the apoptosis induction, compared with treatment with either agent alone. Co-treatment with SB and TRAIL effectively increased the cell-surface expression of death receptor (DR) 5, but not DR4, which was associated with the inhibition of cellular Fas-associated death domain (FADD)-like interleukin-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP). Furthermore, the activation of caspases (caspase-3, -8 and -9) and degradation of poly(ADP-ribose) were markedly increased in 5637 cells co-treated with SB and TRAIL; however, the synergistic effect was perfectly attenuated by caspase inhibitors. We also found that combined treatment with SB and TRAIL effectively induced the expression of pro-apoptotic Bax, cytosolic cytochrome c and cleave Bid to truncated Bid (tBid), along with down-regulation of anti-apoptotic Bcl-xL expression. These results collectively suggest that a combined regimen of SB plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating TRAIL-resistant bladder cancer cells.