References
- Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80:361-554. https://doi.org/10.1152/physrev.2000.80.1.361
- Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142:1-28. https://doi.org/10.1016/S0021-9150(98)00196-8
- Iuliano L. Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids. 2011;164:457-468. https://doi.org/10.1016/j.chemphyslip.2011.06.006
- Carpenter KL, Taylor SE, van der Veen C, Williamson BK, Ballantine JA, Mitchinson MJ. Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Biochim Biophys Acta. 1995;1256:141-150. https://doi.org/10.1016/0005-2760(94)00247-V
- Garcia-Cruset S, Carpenter KL, Guardiola F, Stein BK, Mitchinson MJ. Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radic Res. 2001;35:31-41. https://doi.org/10.1080/10715760100300571
- Heo W, Kim SM, Eo SK, Rhim BY, Kim K. FSL-1, a Toll-like receptor 2/6 agonist, induces expression of interleukin-1α in the presence of 27-hydroxycholesterol. Korean J Physiol Pharmacol. 2014;18:475-480. https://doi.org/10.4196/kjpp.2014.18.6.475
- Kim SM, Lee SA, Kim BY, Bae SS, Eo SK, Kim K. 27-Hydroxycholesterol induces recruitment of monocytic cells by enhancing CCL2 production. Biochem Biophys Res Commun. 2013;442:159-164. https://doi.org/10.1016/j.bbrc.2013.11.052
- Lee J, Kim BY, Son Y, Giang DH, Lee D, Eo SK, Kim K. 4'-O-Methylalpinumisoflavone inhibits the activation of monocytes/macrophages to an immunostimulatory phenotype induced by 27-hydroxycholesterol. Int J Mol Med. 2019;43:2177-2186.
- Son Y, Kim SM, Lee SA, Eo SK, Kim K. Oxysterols induce transition of monocytic cells to phenotypically mature dendritic cell-like cells. Biochem Biophys Res Commun. 2013;438:161-168. https://doi.org/10.1016/j.bbrc.2013.07.046
- Kim SM, Kim BY, Eo SK, Kim CD, Kim K. 27-Hydroxycholesterol up-regulates CD14 and predisposes monocytic cells to superproduction of CCL2 in response to lipopolysaccharide. Biochim Biophys Acta. 2015;1852:442-450. https://doi.org/10.1016/j.bbadis.2014.12.003
- Kim SM, Kim BY, Lee SA, Eo SK, Yun Y, Kim CD, Kim K. 27-Hydroxycholesterol and 7alpha-hydroxycholesterol trigger a sequence of events leading to migration of CCR5-expressing Th1 lymphocytes. Toxicol Appl Pharmacol. 2014;274:462-470. https://doi.org/10.1016/j.taap.2013.12.007
- Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP, Lund EG. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem. 2001;276:38378-38387. https://doi.org/10.1074/jbc.M105805200
- Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006;126:789-799. https://doi.org/10.1016/j.cell.2006.06.049
- Ignatova ID, Angdisen J, Moran E, Schulman IG. Differential regulation of gene expression by LXRs in response to macrophage cholesterol loading. Mol Endocrinol. 2013;27:1036-1047. https://doi.org/10.1210/me.2013-1051
- Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9:1033-1045. https://doi.org/10.1101/gad.9.9.1033
- Zuercher WJ, Buckholz RG, Campobasso N, Collins JL, Galardi CM, Gampe RT, Hyatt SM, Merrihew SL, Moore JT, Oplinger JA, Reid PR, Spearing PK, Stanley TB, Stewart EL, Willson TM. Discovery of tertiary sulfonamides as potent liver X receptor antagonists. J Med Chem. 2010;53:3412-3416. https://doi.org/10.1021/jm901797p
- Kim SM, Jang H, Son Y, Lee SA, Bae SS, Park YC, Eo SK, Kim K. 27-hydroxycholesterol induces production of tumor necrosis factor-alpha from macrophages. Biochem Biophys Res Commun. 2013;430:454-459. https://doi.org/10.1016/j.bbrc.2012.12.021
- Hong C, Walczak R, Dhamko H, Bradley MN, Marathe C, Boyadjian R, Salazar JV, Tontonoz P. Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: identification of ARL7 as a direct target. J Lipid Res. 2011;52:531-539. https://doi.org/10.1194/jlr.M010686
- Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 2003;9:213-219. https://doi.org/10.1038/nm820
- Fowler AJ, Sheu MY, Schmuth M, Kao J, Fluhr JW, Rhein L, Collins JL, Willson TM, Mangelsdorf DJ, Elias PM, Feingold KR. Liver X receptor activators display anti-inflammatory activity in irritant and allergic contact dermatitis models: liver-X-receptor-specific inhibition of inflammation and primary cytokine production. J Invest Dermatol. 2003;120:246-255. https://doi.org/10.1046/j.1523-1747.2003.12033.x
- Heine G, Dahten A, Hilt K, Ernst D, Milovanovic M, Hartmann B, Worm M. Liver X receptors control IgE expression in B cells. J Immunol. 2009;182:5276-5282. https://doi.org/10.4049/jimmunol.0801804
- Park MC, Kwon YJ, Chung SJ, Park YB, Lee SK. Liver X receptor agonist prevents the evolution of collagen-induced arthritis in mice. Rheumatology (Oxford). 2010;49:882-890. https://doi.org/10.1093/rheumatology/keq007
- Terasaka N, Hiroshima A, Koieyama T, Ubukata N, Morikawa Y, Nakai D, Inaba T. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett. 2003;536:6-11. https://doi.org/10.1016/S0014-5793(02)03578-0
- Bruhn KW, Marathe C, Maretti-Mira AC, Nguyen H, Haskell J, Tran TA, Vanchinathan V, Gaur U, Wilson ME, Tontonoz P, Craft N. LXR deficiency confers increased protection against visceral Leishmania infection in mice. PLoS Negl Trop Dis. 2010;4:e886. https://doi.org/10.1371/journal.pntd.0000886
- Korf H, Vander Beken S, Romano M, Steffensen KR, Stijlemans B, Gustafsson JA, Grooten J, Huygen K. Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J Clin Invest. 2009;119:1626-1637. https://doi.org/10.1172/JCI35288
- Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L, Hogenesch J, O'connell RM, Cheng G, Saez E, Miller JF, Tontonoz P. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell. 2004;119:299-309. https://doi.org/10.1016/j.cell.2004.09.032
- Torocsik D, Barath M, Benko S, Szeles L, Dezso B, Poliska S, Hegyi Z, Homolya L, Szatmari I, Lanyi A, Nagy L. Activation of liver X receptor sensitizes human dendritic cells to inflammatory stimuli. J Immunol. 2010;184:5456-5465. https://doi.org/10.4049/jimmunol.0902399
- Zhou Y, Yoshida S, Kubo Y, Yoshimura T, Kobayashi Y, Nakama T, Yamaguchi M, Ishikawa K, Oshima Y, Ishibashi T. Different distributions of M1 and M2 macrophages in a mouse model of laserinduced choroidal neovascularization. Mol Med Rep. 2017;15:3949-3956. https://doi.org/10.3892/mmr.2017.6491
- Marengo B, Bellora F, Ricciarelli R, De Ciucis C, Furfaro A, Leardi R, Colla R, Pacini D, Traverso N, Moretta A, Pronzato MA, Bottino C, Domenicotti C. Oxysterol mixture and, in particular, 27-hydroxycholesterol drive M2 polarization of human macrophages. Biofactors. 2016;42:80-92. https://doi.org/10.1002/biof.1243
Cited by
- Miconazole Suppresses 27-Hydroxycholesterol-induced Inflammation by Regulating Activation of Monocytic Cells to a Proinflammatory Phenotype vol.12, 2021, https://doi.org/10.3389/fphar.2021.691019