• Title/Summary/Keyword: Lifetime performance

Search Result 738, Processing Time 0.032 seconds

The Stockpile Reliability of Propelling Charge for Performance and Storage Safety using Stochastic Process (확률과정론을 이용한 추진장약의 성능과 저장안전성에 관한 저장신뢰성평가)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.1
    • /
    • pp.135-148
    • /
    • 2013
  • Purpose: This paper presents a method to evaluate the stockpile reliability of propelling charge for performance and storage safety with storage time. Methods: We consider a performance failure level is the amount of muzzle velocity drop which is the maximum allowed standard deviation multiplied by 6. The lifetime for performance is estimated by non-linear regression analysis. The state failure level is assumed that the content of stabilizer is below 0.2%. Because the degradation of stabilizer with storage time has both distribution of state and distribution of lifetime, it must be evaluated by stochastic process method such as gamma process. Results: It is estimated that the lifetime for performance is 59 years. The state distribution at each storage time can be shown from probability density function of degradation. It is estimated that the average lifetime as $B_{50}$ life is 33 years from cumulative failure distribution function curve. Conclusion: The lifetime for storage safety is shorter than for performance and we must consider both the lifetime for storage safety and the lifetime performance because of variation of degradation rate.

The Effect of Membrane Thickness on Durability and Performance of Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지의 전해질 막 두께가 내구성과 성능에 미치는 영향)

  • Hwang, Byungchan;Lee, Hyeri;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.473-477
    • /
    • 2017
  • The polymer membrane of proton exchange membrane fuel cell (PEMFC) has a great influence on PEMFC performance and durability. In this study, hydrogen permeability, fluorine emission rate (FER), lifetime, and performance of Nafion membranes with different thicknesses were measured to investigate the effect of thickness of polymer membrane on performance and durability. The relationship between membrane thickness and lifetime was obtained from the relationships between hydrogen permeability and membrane thickness, hydrogen permeability and FER, FER and lifetime. As the membrane became thicker, the hydrogen permeability and FER decreased and the lifetime increased. On the other hand, the performance decreased with increasing membrane resistance. The membrane thickness range satisfying both performance and durability was 25 to $28{\mu}m$.

Lifetime Performance Index for Weibull Distribution: Estimation and Applications (와이블 분포를 따를 때 수명성능지수의 추정과 활용)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.13 no.3
    • /
    • pp.191-206
    • /
    • 2013
  • Application areas for Lifetime Performance Index(LPI), a kind of process capability index to be frequently used as a means of measuring process performance are illustrated with examples. Statistical properties for maximum likelihood and unbiased estimators of LPI are evaluated and discussed under Weibull distribution with known shape parameter. Furthermore, guidelines for selecting an estimator of LPI are also presented.

Dynamic Key Lifetime Change Protocol for Performance Improvement of Virtual Private Networks using IPSec (IPSec을 적용한 가상사설망의 성능개선을 위한 동적 키 재생성 주기 변경 프로토콜)

  • 한종훈;이정우;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.125-128
    • /
    • 2003
  • In this paper, we propose a dynamic key lifetime change protocol for performance enhancement of virtual private networks using IPSec. The proposed protocol changes the key lifetime according to the number of secure tunnels. The proposed protocol is implemented with Linux 2.4.18 and FreeS/WAN 1.99. The system employing our proposed protocol performs better than the original version in terms of network performance and security.

  • PDF

Probabilistic-based prediction of lifetime performance of RC bridges subject to maintenance interventions

  • Tian, Hao;Li, Fangyuan
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.499-521
    • /
    • 2016
  • In this paper, a probabilistic- and finite element-based approach to evaluate and predict the lifetime performance of reinforced concrete (RC) bridges undergoing various maintenance actions is proposed with the time-variant system reliability being utilized as a performance indicator. Depending on their structural state during the degradation process, the classical maintenance actions for RC bridges are firstly categorized into four types: Preventive type I, Preventive type II, Strengthening and Replacement. Preventive type I is used to delay the onset of steel corrosion, Preventive type II can suppress the corrosion process of reinforcing steel, Strengthening is the application of various maintenance materials to improve the structural performance and Replacement is performed to restore the individual components or overall structure to their original conditions. The quantitative influence of these maintenance types on structural performance is investigated and the respective analysis modules are written and inputted into the computer program. Accordingly, the time-variant system reliability can be calculated by the use of Monte Carlo simulations and the updated the program. Finally, an existing RC continuous bridge located in Shanghai, China, is used as an illustrative example and the lifetime structural performance with and without each of the maintenance types are discussed. It is felt that the proposed approach can be applied to various RC bridges with different structural configurations, construction methods and environmental conditions.

Load bearing capacity reduction of concrete structures due to reinforcement corrosion

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.455-464
    • /
    • 2020
  • Reinforcement corrosion is one of the major problems in the durability of reinforced concrete structures exposed to aggressive environments. Deterioration caused by reinforcement corrosion reduces the durability and the safety margin of concrete structures, causing excessive costs in managing these structures safely. This paper aims to investigate the effects of reinforcement corrosion on the load bearing capacity deterioration of the corroded reinforced concrete structures. A new analytical method is proposed to predict the crack growth of cover concrete and evaluate the residual strength of concrete structures with corroded reinforcement failing in bond. The structural performance indicators, such as concrete crack growth and flexural strength deterioration rate, are assumed to be a stochastic process for lifetime distribution modelling of structural performance deterioration over time during the life cycle. The Weibull life evolution model is employed for analysing lifetime reliability and estimating remaining useful life of the corroded concrete structures. The results for the worked example show that the proposed approach can provide a reliable method for lifetime performance assessment of the corroded reinforced concrete structures.

A HYPOTHESIS TESTING PROCEDURE OF ASSESSMENT FOR THE LIFETIME PERFORMANCE INDEX UNDER A GENERAL CLASS OF INVERSE EXPONENTIATED DISTRIBUTIONS WITH PROGRESSIVE TYPE I INTERVAL CENSORING

  • KAYAL, TANMAY;TRIPATHI, YOGESH MANI;WU, SHU-FEI
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.1_2
    • /
    • pp.105-121
    • /
    • 2019
  • One of the main objective of manufacturing industries is to assess the capability performance of different processes. In this paper, we use the lifetime performance index $C_L$ as a criterion to measure larger-the-better type quality characteristic for evaluating the product performance. The lifetimes of products are assumed to follow a general class of inverted exponentiated distributions. We use maximum likelihood estimator to estimate the lifetime performance index under the assumption that data are progressive type I interval censored. We also obtain asymptotic distribution of this estimator. Based on this estimator, a new hypothesis testing procedure is developed with respect to a given lower specification limit. Finally, two numerical examples are discussed in support of the proposed testing procedure.

Simulation of membrane lifetime by analysis on deterioration of reverse osmosis membrane (역삼투 막 열화 분석을 통한 막 수명 모의)

  • Sun-A An;Seong-Min Cho;Han-Seung Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.4
    • /
    • pp.223-232
    • /
    • 2024
  • This study was conducted to simulate the lifetime of the membrane by analyzing the performance of the membrane degraded by chlorine. Chlorine exposure under several conditions caused the degradation of the membrane, resulting in the absence of any salts and an extreme increase in permeability. When the n value was calculated and compared through CnT analysis and CTn analysis, the p values were all less than 0.005, but CTn analysis, which had a higher R2 value, was adopted to simulate the membrane lifetime. Power coefficients take on values higher than 1, indicating that the exposure time to chlorine has a greater influence on membrane deterioration than the chlorine exposure concentration at 20℃ and 30℃. In particular, the process should be operated at less than 0.5 ppm at 30℃, and the chlorine exposure time of 1 cycle should be set to within 15 hours. In addition, the sensitivity to chlorine increased by 10.5 to 12.2 times when the chlorine exposure temperature increased by 10℃ through the correlation between the chlorine exposure cycle and membrane lifetime. The membrane lifetime investigated in this study is only an estimated value, entirely because of chlorine membrane deterioration, excluding raw water characteristics and the type of detergent. Accordingly, it is considered that the membrane lifetime simulation can be applied by comparing the membrane performance with the actual process based on the filtration performance of membrane deterioration by chlorine.

Probabilistic vibration and lifetime analysis of regenerated turbomachinery blades

  • Berger, Ricarda;Rogge, Timo;Jansen, Eelco;Rolfes, Raimund
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.503-521
    • /
    • 2016
  • Variances in turbomachinery blades caused by manufacturing, operation or regeneration can result in modified structural behavior. In this work, the scatter of geometrical and material properties of a turbine blade and its influence on structure performance is discussed. In particular, the vibration characteristics and the lifetime of a turbine blade are evaluated. Geometrical variances of the surface of the blades are described using the principal component analysis. The scatter in material properties is considered by 16 varying material parameters. Maximum vibration amplitudes and the number of load cycles the turbine blade can withstand are analyzed by finite element simulations incorporating probabilistic principles. The probabilistic simulations demonstrate that both geometrical and material variances have a significant influence on the scatter of vibration amplitude and lifetime. Dependencies are quantified and correlations between varied input parameters and the structural performance of the blade are detected.

Reliability Assessment Criteria of Air Quality System (자동차용 유해가스 검출기의 신뢰성 평가기준)

  • Choi, Man-Yeop;Park, Dong-Kyu;Oh, Geun-Tae;Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.10 no.4
    • /
    • pp.279-297
    • /
    • 2010
  • AQS(Air Quality Control System) is the important part of a car air conditioning system. This device intercepts automatically the influx of harmful waste gas. In this paper reliability assessment criteria for AQS are established in terms of quality certification test and lifetime test. The former quality certification test comprises general performance test and environmental test. Items which pass the test undergo lifetime test which guarantees the extent of mean lifetime with certain confidence.