Acknowledgement
본 연구는 한국환경산업기술원 "수열 활용확대 기술 및 환경적합성 기술개발사업(G232020120074)"의 지원으로 수행되었습니다.
References
- Abdullah, S.Z. and Berube, P.R. (2013). Assessing the effects of sodium hypochlorite exposure on the characteristics of PVDF based membranes, Water Res., 47(14), 5392-5399. https://doi.org/10.1016/j.watres.2013.06.018
- An, S.A., Park, C.G., Lee, J.S., Cho, S.M., Woo, Y.C., and Kim, H.S. (2023). Exposure dose and temperature of chlorine on deterioration of thin-film composite membranes for reverse osmosis and nanofiltration, Chemosphere, 333, 138929.
- Antony, A., Fudianto, R., Cox, S., and Leslie, G. (2010). Assessing the oxidative degradation of polyamide reverse osmosis membrane-Accelerated ageing with hypochlorite exposure, J. Membr. Sci., 347(1-2), 159-164. https://doi.org/10.1016/j.memsci.2009.10.018
- Bar-Zeev, E., Zodrow, K.R., Kwan, S.E., and Elimelech, M. (2014). The importance of microscopic characterization of membrane biofilms in an unconfined environment, Desalination, 348, 8-15. https://doi.org/10.1016/j.desal.2014.06.003
- Bartels, C.R., Wilf, M., Andes, K., and Iong, J. (2005). Design considerations for wastewater treatment by reverse osmosis, Water Sci. Technol., 51(6-7), 473-482. https://doi.org/10.2166/wst.2005.0670
- Coutinho de Paula, E. and Amaral, M.C.S. (2017). Extending the life-cycle of reverse osmosis membranes: A review, Waste Manag. Res., 35(5), 456-470. https://doi.org/10.1177/0734242X16684383
- Cran, M.J., Bigger, S.W., and Gray, S.R. (2011). Degradation of polyamide reverse osmosis membranes in the presence of chloramine, Desalination, 283, 58-63. https://doi.org/10.1016/j.desal.2011.04.050
- Davenport, D.M., Deshmukh, A., Werber, J.R., and Elimelech, M. (2018). High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: current status, design considerations, and research needs, Environ. Sci. Technol. Lett., 5(8), 467-475. https://doi.org/10.1021/acs.estlett.8b00274
- Garcia-Pacheco, R., Landaburu-Aguirre, J., Lejarazu-Larranaga, A., Rodriguez-Saez, L., Molina, S., Ransome, T., and Garcia-Calvo, E. (2019). Free chlorine exposure dose (ppm.h) and its impact on RO membranes ageing and recycling potential, Desalination, 457, 133-143. https://doi.org/10.1016/j.desal.2019.01.030
- Glater, J., Hong, S.K., and Elimelech, M. (1994). The search for a chlorine-resistant reverse osmosis membrane, Desalination, 95(3), 325-345. https://doi.org/10.1016/0011-9164(94)00068-9
- Gohil, J.M. and Suresh, A.K. (2017). Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies, J. Membr. Sci, 541, 108-126. https://doi.org/10.1016/j.memsci.2017.06.092
- Ham, S.Y., Kim, H.S., Jang, Y., Ryoo, H.S., Lee, J.H., Park, J.H., and Park, H.D. (2021). Synergistic control of membrane biofouling using linoleic acid and sodium hypochlorite, Chemosphere, 268, 128802.
- He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., and Bryan, B.A. (2021). Future global urban water scarcity and potential solutions, Nat. Commun., 12(1), 4667.
- Jones, E., Qadir, M., van Vliet, M.T., Smakhtin, V., and Kang, S.-M. (2019). The state of desalination and brine production: A global outlook, Sci. Total Environ., 657, 1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076
- Kwon, Y.-N. and Leckie, J.O. (2006). Hypochlorite degradation of crosslinked polyamide membranes: I. Changes in chemical/morphological properties, J. Membr. Sci, 283(1-2), 21-26. https://doi.org/10.1016/j.memsci.2006.06.008
- Light, W., Chu, H., and Tran, C. (1987). Reverse osmosis TFC magnum elements for chlorinated/dechlorinated feedwater processing, Desalination, 64, 411-421. https://doi.org/10.1016/0011-9164(87)90113-5
- Madaeni, S. and Samieirad, S. (2010). Chemical cleaning of reverse osmosis membrane fouled by wastewater, Desalination, 257(1-3), 80-86. https://doi.org/10.1016/j.desal.2010.03.002
- Ohno, M., Manalo, C., Okuda, T., Nakai, S., and Nishijima, W. (2016). Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing, Int. J. Chem. Mol. Eng., 10(1), 136-143.
- Pendergast, M.M., Nygaard, J.M., Ghosh, A.K., and Hoek, E.M. (2010). Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction, Desalination, 261(3), 255-263. https://doi.org/10.1016/j.desal.2010.06.008
- Petersen, R.J. (1993). Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83(1), 81-150. https://doi.org/10.1016/0376-7388(93)80014-O
- Pontie, M., Rapenne, S., Thekkedath, A., Duchesne, J., Jacquemet, V., Leparc, J., and Suty, H. (2005). Tools for membrane autopsies and antifouling strategies in seawater feeds: a review, Desalination, 181(1-3), 75-90. https://doi.org/10.1016/j.desal.2005.01.013
- Pype, M.-L., Donose, B.C., Marti, L., Patureau, D., Wery, N., and Gernjak, W. (2016). Virus removal and integrity in aged RO membranes, Water Res., 90, 167-175. https://doi.org/10.1016/j.watres.2015.12.023
- Ramon, G.Z., Wong, M.C., and Hoek, E.M. (2012). Transport through composite membrane, part 1: Is there an optimal support membrane? J. Membr. Sci., 415, 298-305. https://doi.org/10.1016/j.memsci.2012.05.013
- Souza-Chaves, B.M., Alhussaini, M.A., Felix, V., Presson, L.K., Betancourt, W.Q., Hickenbottom, K.L., and Achilli, A. (2022). Extending the life of water reuse reverse osmosis membranes using chlorination, J. Membr. Sci., 642, 119897.
- Watters, J.C., Klein, E., Fleischman, M., Roberts, J.S., and Hall, B. (1986). Rejection spectra of reverse osmosis membranes degraded by hydrolysis or chlorine attack, Desalination, 60(2), 93-110. https://doi.org/10.1016/0011-9164(86)90001-9
- Wu, J., Jung, B., Anvari, A., Im, S., Anderson, M., Zheng, X., Jassby, D., Kaner, R.B., Dlamini, D., and Edalat, A. (2022). Reverse osmosis membrane compaction and embossing at ultra-high pressure operation, Desalination, 537, 115875.