DOI QR코드

DOI QR Code

Simulation of membrane lifetime by analysis on deterioration of reverse osmosis membrane

역삼투 막 열화 분석을 통한 막 수명 모의

  • Sun-A An (Department of Environmental Engineering and Energy, Myongji University) ;
  • Seong-Min Cho (Department of Environmental Engineering and Energy, Myongji University) ;
  • Han-Seung Kim (Department of Environmental Engineering and Energy, Myongji University)
  • 안선아 (명지대학교 환경에너지공학과) ;
  • 조성민 (명지대학교 환경에너지공학과) ;
  • 김한승 (명지대학교 환경에너지공학과)
  • Received : 2024.04.21
  • Accepted : 2024.06.21
  • Published : 2024.08.15

Abstract

This study was conducted to simulate the lifetime of the membrane by analyzing the performance of the membrane degraded by chlorine. Chlorine exposure under several conditions caused the degradation of the membrane, resulting in the absence of any salts and an extreme increase in permeability. When the n value was calculated and compared through CnT analysis and CTn analysis, the p values were all less than 0.005, but CTn analysis, which had a higher R2 value, was adopted to simulate the membrane lifetime. Power coefficients take on values higher than 1, indicating that the exposure time to chlorine has a greater influence on membrane deterioration than the chlorine exposure concentration at 20℃ and 30℃. In particular, the process should be operated at less than 0.5 ppm at 30℃, and the chlorine exposure time of 1 cycle should be set to within 15 hours. In addition, the sensitivity to chlorine increased by 10.5 to 12.2 times when the chlorine exposure temperature increased by 10℃ through the correlation between the chlorine exposure cycle and membrane lifetime. The membrane lifetime investigated in this study is only an estimated value, entirely because of chlorine membrane deterioration, excluding raw water characteristics and the type of detergent. Accordingly, it is considered that the membrane lifetime simulation can be applied by comparing the membrane performance with the actual process based on the filtration performance of membrane deterioration by chlorine.

Keywords

Acknowledgement

본 연구는 한국환경산업기술원 "수열 활용확대 기술 및 환경적합성 기술개발사업(G232020120074)"의 지원으로 수행되었습니다.

References

  1. Abdullah, S.Z. and Berube, P.R. (2013). Assessing the effects of sodium hypochlorite exposure on the characteristics of PVDF based membranes, Water Res., 47(14), 5392-5399. https://doi.org/10.1016/j.watres.2013.06.018
  2. An, S.A., Park, C.G., Lee, J.S., Cho, S.M., Woo, Y.C., and Kim, H.S. (2023). Exposure dose and temperature of chlorine on deterioration of thin-film composite membranes for reverse osmosis and nanofiltration, Chemosphere, 333, 138929.
  3. Antony, A., Fudianto, R., Cox, S., and Leslie, G. (2010). Assessing the oxidative degradation of polyamide reverse osmosis membrane-Accelerated ageing with hypochlorite exposure, J. Membr. Sci., 347(1-2), 159-164. https://doi.org/10.1016/j.memsci.2009.10.018
  4. Bar-Zeev, E., Zodrow, K.R., Kwan, S.E., and Elimelech, M. (2014). The importance of microscopic characterization of membrane biofilms in an unconfined environment, Desalination, 348, 8-15. https://doi.org/10.1016/j.desal.2014.06.003
  5. Bartels, C.R., Wilf, M., Andes, K., and Iong, J. (2005). Design considerations for wastewater treatment by reverse osmosis, Water Sci. Technol., 51(6-7), 473-482. https://doi.org/10.2166/wst.2005.0670
  6. Coutinho de Paula, E. and Amaral, M.C.S. (2017). Extending the life-cycle of reverse osmosis membranes: A review, Waste Manag. Res., 35(5), 456-470. https://doi.org/10.1177/0734242X16684383
  7. Cran, M.J., Bigger, S.W., and Gray, S.R. (2011). Degradation of polyamide reverse osmosis membranes in the presence of chloramine, Desalination, 283, 58-63. https://doi.org/10.1016/j.desal.2011.04.050
  8. Davenport, D.M., Deshmukh, A., Werber, J.R., and Elimelech, M. (2018). High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: current status, design considerations, and research needs, Environ. Sci. Technol. Lett., 5(8), 467-475. https://doi.org/10.1021/acs.estlett.8b00274
  9. Garcia-Pacheco, R., Landaburu-Aguirre, J., Lejarazu-Larranaga, A., Rodriguez-Saez, L., Molina, S., Ransome, T., and Garcia-Calvo, E. (2019). Free chlorine exposure dose (ppm.h) and its impact on RO membranes ageing and recycling potential, Desalination, 457, 133-143. https://doi.org/10.1016/j.desal.2019.01.030
  10. Glater, J., Hong, S.K., and Elimelech, M. (1994). The search for a chlorine-resistant reverse osmosis membrane, Desalination, 95(3), 325-345. https://doi.org/10.1016/0011-9164(94)00068-9
  11. Gohil, J.M. and Suresh, A.K. (2017). Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies, J. Membr. Sci, 541, 108-126. https://doi.org/10.1016/j.memsci.2017.06.092
  12. Ham, S.Y., Kim, H.S., Jang, Y., Ryoo, H.S., Lee, J.H., Park, J.H., and Park, H.D. (2021). Synergistic control of membrane biofouling using linoleic acid and sodium hypochlorite, Chemosphere, 268, 128802.
  13. He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., and Bryan, B.A. (2021). Future global urban water scarcity and potential solutions, Nat. Commun., 12(1), 4667.
  14. Jones, E., Qadir, M., van Vliet, M.T., Smakhtin, V., and Kang, S.-M. (2019). The state of desalination and brine production: A global outlook, Sci. Total Environ., 657, 1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076
  15. Kwon, Y.-N. and Leckie, J.O. (2006). Hypochlorite degradation of crosslinked polyamide membranes: I. Changes in chemical/morphological properties, J. Membr. Sci, 283(1-2), 21-26. https://doi.org/10.1016/j.memsci.2006.06.008
  16. Light, W., Chu, H., and Tran, C. (1987). Reverse osmosis TFC magnum elements for chlorinated/dechlorinated feedwater processing, Desalination, 64, 411-421. https://doi.org/10.1016/0011-9164(87)90113-5
  17. Madaeni, S. and Samieirad, S. (2010). Chemical cleaning of reverse osmosis membrane fouled by wastewater, Desalination, 257(1-3), 80-86. https://doi.org/10.1016/j.desal.2010.03.002
  18. Ohno, M., Manalo, C., Okuda, T., Nakai, S., and Nishijima, W. (2016). Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing, Int. J. Chem. Mol. Eng., 10(1), 136-143.
  19. Pendergast, M.M., Nygaard, J.M., Ghosh, A.K., and Hoek, E.M. (2010). Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction, Desalination, 261(3), 255-263. https://doi.org/10.1016/j.desal.2010.06.008
  20. Petersen, R.J. (1993). Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83(1), 81-150. https://doi.org/10.1016/0376-7388(93)80014-O
  21. Pontie, M., Rapenne, S., Thekkedath, A., Duchesne, J., Jacquemet, V., Leparc, J., and Suty, H. (2005). Tools for membrane autopsies and antifouling strategies in seawater feeds: a review, Desalination, 181(1-3), 75-90. https://doi.org/10.1016/j.desal.2005.01.013
  22. Pype, M.-L., Donose, B.C., Marti, L., Patureau, D., Wery, N., and Gernjak, W. (2016). Virus removal and integrity in aged RO membranes, Water Res., 90, 167-175. https://doi.org/10.1016/j.watres.2015.12.023
  23. Ramon, G.Z., Wong, M.C., and Hoek, E.M. (2012). Transport through composite membrane, part 1: Is there an optimal support membrane? J. Membr. Sci., 415, 298-305. https://doi.org/10.1016/j.memsci.2012.05.013
  24. Souza-Chaves, B.M., Alhussaini, M.A., Felix, V., Presson, L.K., Betancourt, W.Q., Hickenbottom, K.L., and Achilli, A. (2022). Extending the life of water reuse reverse osmosis membranes using chlorination, J. Membr. Sci., 642, 119897.
  25. Watters, J.C., Klein, E., Fleischman, M., Roberts, J.S., and Hall, B. (1986). Rejection spectra of reverse osmosis membranes degraded by hydrolysis or chlorine attack, Desalination, 60(2), 93-110. https://doi.org/10.1016/0011-9164(86)90001-9
  26. Wu, J., Jung, B., Anvari, A., Im, S., Anderson, M., Zheng, X., Jassby, D., Kaner, R.B., Dlamini, D., and Edalat, A. (2022). Reverse osmosis membrane compaction and embossing at ultra-high pressure operation, Desalination, 537, 115875.