• Title/Summary/Keyword: Life-cycle assessment

Search Result 724, Processing Time 0.027 seconds

High Performance Fiber Reinforced Cement Composites in Construction Field (건설분야의 섬유강화 시멘트 복합 신재료)

  • Hong, Geon-Ho;Kim, Ki-Soo;Han, Bog-Kyu
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • High performance fiber reinforced cement composites have better performances than traditional cement based materials, therefore, have been expected as new construction applications such as the materials for construction & bridge structure, repair and rehabilitation applications, anti-collapse applications, anti-noise applications etc. However, they have lots of the problems such as material design, fabrication method and structural analysis. Also, the most serious problems of High performance fiber reinforced cement composites have been expensive initial cost, lack of long-term exposure data. As a result, it is needed that the efforts for lowering the initial cost and accumulation of long-term exposure. There has been hardly assessment results of life cycle cost for HPFRCC in construction field, but some papers showed that total life cycle cost could be profitable if the initial cost could be reduced.

Material Life Cycle Assessment of Graphene 2wt% Added to Li1.6Ni0.35Mn0.65O2 Half-Cell (그래핀 2wt%를 첨가한 Li1.6Ni0.35Mn0.65O2 Half-Cell의 물질 전 과정 평가)

  • CHO, KYOUNG-WON;LEE, YOUNG-HWAN;HAN, JEONG-HEUM;YU, JAE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.132-137
    • /
    • 2020
  • Lithium secondary batteries have become an important power source for portable electronic devices such as cellular phones, laptop computers. Presently, commercialized lithium-ion batteries use a LiCoO2 cathode. However, due to the high cost and environmental problems resulting from cobalt, an intensive search for new electrode materials is being actively conducted. Recently, solid solution LiMn1-xNixO2 have become attractive because of high capacity and enhanced safety at high voltages over 4.5 V. The Li1.6Ni0.35Mn0.65O2 compounds were conventionally prepared by a sol-gel method, which can produce the layered Li-Ni-Mn-O compounds with a high homogeneity. And by adding a graphene 2wt% the first charge-discharge voltage profiles was increased over Li1.6Ni0.35Mn0.65O2 compound. Also, the variation s of the discharge capacities with cycling showed a higher capacity retention rater. In this study, material lifecycle evaluation was performed to analyze the environmental impact characteristics of Li1.6Ni0.35Mn0.65O2 & graphene 2wt% half-cell manufacturing process. The software of material life cycle assessment was Gabi. Through this, environmental impact assessment was performed for each process. The environmental loads induced by Li1.6Ni0.35Mn0.65O2 & graphene 2wt% synthesis process were quantified and analyzed, and the results showed that the amount of power had the greatest impact on the environment.

Environmental Impact Evaluation on Landfill Treatment of Petro-Chemical Wastewater Sludge by Life Cycle Assessment (전과정평가를 이용한 석유화학 폐수처리슬러지의 매립처리에 대한 환경영향평가)

  • Kim, Hyeong-Woo;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.589-595
    • /
    • 2016
  • This study evaluated the environmental impacts for landfill treatment of the wastewater treatment sludge (WTS) from petrochemical firms by life cycle assessment (LCA) and reviewed the impact reduction by landfill gas (LFG) utilization. The functional unit was 'landfill of 1 ton of WTS', and the system boundary included the process of input and treatment for WTS in landfill site. The impacts were high at landfill process (LP) and leachate treatment process (LTP). Global warming (GWP) and photochemical oxidants creation (POCP) were high at LP, while abiotic depletion (ADP), acidification (AP), eutrophication (EP), ozone depletion (ODP) were high at LTP. The major substances of various impact categories were crude oil (ADP), $NO_X$ (AP, EP), $CH_4$ (GWP, POCP), $Cl_2$ (ODP), respectively. The major factor of ADP, AP, EP was attributed from the generation of electricity used in LTP, and the methane within uncollected LFG was main factor of GWP and POCP. Therefore, electricity consumption reduction is identified to be an impact improvement option, and the flaring system installation or enhanced LFG recovery could be an alternative to reduce impacts. Among the various categories, GWP accounted the highest impact (${\geq}90%$) followed by ADP, POCP. In the avoidance impact resulted from the utilization of LFG, to substitute B-C oil or LNG showed the impact reduction of 32.7% and 12.0%, respectively.

Environmental impact evaluation and improvement measure of incineration plant by life cycle assessment (전과정평가를 이용한 소각시설의 환경영향평가 및 개선방안)

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.88-100
    • /
    • 2013
  • This study evaluated the direct and indirect environmental impacts of various unit operations of a industrial waste incineration plant by using the life cycle assessment tool and reviewed the improvement plan. During the incineration process, the direct environmental impact was decreased with decrease in emission of various air pollutants by incorporating an air pollution prevention facilities. However, an increase in indirect environmental impacts was observed as a consequence of resources and energy of consumption at the various operational facilities. Consequently, quantitative direct and indirect impact were 89.1%, 10.9%, respectively. The environmental impact analysis of system revealed the highest impact of incineration followed by the impacts of other unit processes such as semidry reactor, and bag-filter. The various air pollutants and ashes generated during the incineration process caused the most significant environmental impact. Among the various categories of environmental impact, global warming accounted the highest impact(more than 85%) followed by eutrophication, and abiotic depletion. As a result of the avoided impact by the utilization of heat generated during the waste incineration process, using an incineration heat for steam and electricity obtained the impact reduction of 45.5%, 19.8%. So, during siting of new incineration plant, the utilization of steam generated from the waste combustion is highly considered to reduce the environmental impact.

An Analysis of Factors Affecting Environmental Load in Earthwork Type of Road Project (도로건설공사 토공작업부에 대한 환경부하 영향인자 분석)

  • Park, Jin-Young;Im, Je-Gyu;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2018
  • In the construction industry, attempts to evaluate the environmental impact of products through life cycle assessment (LCA) approach has been on the rise. However, the domestic construction industry needs to make rapid decisions due to limited budget and schedule, so it is difficult to carry out a review of the environmental load on all resources. The decision-making process requires information on the major influence factors that should be focused on to reduce environmental load. And this information should be quantified so that it can be linked to environmental impact assessment. In this study, the LCA results of road construction cases were analyzed to provide such information. As a result, diesel, ready-mixed concrete, urethane-based paint, aggregate, and asphalt concrete were found to be the main factors that generated 93.17% of the environmental load in the earthwork type of road project. The total environmental cost caused by these affecting factors when constructing 1 km of earthwork type of road project is 242 million won. The analysis also shows that a 10% reduction in the amount of ready-mixed and asphalt concretes can reduce carbon emissions by 5.02% and 2.28% while reducing environmental costs by 11 million won per kilometer. In order to reduce carbon emissions of the earthwork type of road project, it is necessary to actively develop and introduce new methods and eco-friendly materials to reduce the overall use of ready-mixed concrete and asphalt concrete.

Influence of Fly Ash on Life-Cycle Environmental Impact of Concrete (플라이애시가 콘크리트의 전과정 환경영향에 미치는 효과)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Choi, Dong-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.515-522
    • /
    • 2014
  • In order to quantitatively evaluate the effect of fly ash (FA) as partial replacement of cement on the life-cycle environmental impact of concrete, a comprehensive database including 4023 laboratory mixes and 2120 plant mixes was analyzed. The environmental loads on the life-cycle assessment were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was decreased with the increase of the replacement level of FA and governed by the unit content of ordinary portland cement (OPC). As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and the replacement level of FA.

A Study on Quality Management and Assessment Model for System-Integration Organization

  • Lee, Byung Yong;Jung, Soo Il
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.68
    • /
    • pp.85-94
    • /
    • 2001
  • Most of customers want to know how to develop the computer system they want to get to use according to the their requirements. This study presents a Computer Integration management System for Quality (CISQ) model for system-integration organizations, which need to demonstrate their capability to consistently provide computer integrated system that meets customer satisfaction and applicable regulatory requirements. The Plan.Do.Check.Act(PDCA) cycle called by Doming wheel expresses the basic concept of continuous improvement action in order to emphasize on achieving business goal. It is useful for providing full competence of a system-integration organization to integrate management systems based on the international management system, and to take an advantage in its market. This study specifies International Certification Network Business Excellence Concept(IBEC) approach to ensure a harmonized integration of the variety of management systems and thereby produce synergy effect. The end part of this study specifies a Assessment Model including an assessment concept adding to the compliance audit according to the CISQ for the continuous improvement. A simple application on Failure Modes and Effects Analysis(FMEA) in testing phase in project life cycle has been done.

  • PDF

Analysis of Safety Assessment of Railway Signalling by Safety Case Documents (Safety Case 문서를 기반한 열차제어시스템 안전성 평가방법 분석)

  • Hwang, Jong-Gyu;Jo, Hyun-Jeong;Yoon, Yong-Ki;Kim, Yong-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1016-1022
    • /
    • 2007
  • It is demanded to produce the safety evidence documents in other to approval safety characteristic of railway signaling system which stands is included, it is demanding from IEC 62425 standards. Also it is express clearly that safety assessment if signaling system has to be verification of these safety evidence documents. This Safety Case has the results of safety activity through system life-cycle, such as hazard lists, hazard identification and analysis, risk assessment and countermeasure, verification and test results. Consequently, first of all, the analysis and verification of these Safety Case documents has to be accomplished to approval and acceptance of signaling system safety. And also if the safety assessor was want, it is able to be experimental test auditory which is, arbitrary faults injection test, to above described documents verification. In this paper, the contents and architecture of Safety Case are presented as first steps of safety assessment technology establishment for railway signaling system.

  • PDF

A Health Index of Aged Undeground MV Cables in Domestic (경년열화된 지중 MV급 케이블의 Aging Index)

  • KIM, Yong-Hyun;KIM, Su-Hwan;LEE, Seung-Won;LIM, Jang-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1216-1216
    • /
    • 2015
  • In this study, the author apply the VLF(Very Low Frequency) tan-delta data that has been measured at each office of the KEPCO 2012 to the Weibull distribution which is the statistical analysis as previous studies for the remaining life prediction through the improvement of the sensitivity and reliability of the degradation state assessment of underground distribution power cables. Also, in this paper, UCD(Used Cable Diagnosis) Matrix proposed by KEPCO was applied to the hierarchy of assessment prioritization. it suggests Aging Index for condition assessment and high reliability of proper economic replacement cycle using the weight according to the assessment prioritization.

  • PDF

The Analysis of CO2 Emission Assessment in Concrete with Smart Blast Furnace Slag (스마트 고로슬래그미분말 혼입 콘크리트의 CO2 배출량 평가에 관한 연구)

  • Kim, Tae-Hyoung;Tae, Sung-Ho;Ha, Sung-Kyun;Park, Jung-Hoon;Roh, Seung-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.43-45
    • /
    • 2012
  • As a part of recent CO2 emission reduction studies in the concrete industry with active use of concrete admixtures with low basic unit of CO2 emission such as blast furnace slag (BFS), basic unit of CO2 emission by SBFS was computed in order to assess CO2 emission by reinforced concrete building with smart blast furnace slag (SBFS). In addition, SBFS concrete was applied to the subject building for assessment of CO2 emission during material production step among construction steps. Life cycle CO2 emission assessment on the subject building was classified into 7cases according to mix ratio of BFS and SBFS.

  • PDF