• 제목/요약/키워드: Life-Cycle Cost (LCC)

검색결과 319건 처리시간 0.026초

LCC 기법을 통한 자연채광의 경제성 분석에 대한 연구 (A Feasibility Study on the Benefit of Daylighting by LCC Analysis)

  • 김정태;김곤
    • KIEAE Journal
    • /
    • 제6권1호
    • /
    • pp.3-10
    • /
    • 2006
  • As has been expected, economic factors are a major consideration in almost every decision in building design process. Assuming that improving a lighting system, existing or proposed, will reduce operating cost, what preliminary economic guidelines can be established to determine whether any proposed investment appears cost effective? In such a case a reasonable technique to compare system costs is by life-cycle costing. Stated simply, a life-cycle cost represents the total cost of a system over its entire life cycle, that is, the sum of first cost and all future costs. This paper aims to exemplify the benefit of daylighting in term of economic consideration. Four different electric lighting system designs are proposed and a lighting control system that is continuously operating according to the level of daylight in the space has been adapted. The accumulated performance of electric and daylighting is figured out to declare the effective depth of daylight in the space. The analysis on the saving amount of lighting energy due to daylight has been undertaken in answer to the question, that is, several projects are being considered, which is the most desirable from the cost-effectiveness viewpoint. The result shows clearly that although denser layout of lighting fixtures might be more effective to interface to the level of daylight ceaselessly changeable, its economic benefit may not meet the expected criterion the reason of increased initial investment and maintenance cost for the fixtures and control hardware.

개보수 대상 건물의 비용 측면에서의 효율성 평가에 관한 연구 - 바닥 마감재를 중심으로 - (A Study on the Evaluation of the Efficiency in the Costs of the Remodeling)

  • 김상용;정병우;강경인
    • 한국건축시공학회지
    • /
    • 제3권4호
    • /
    • pp.129-134
    • /
    • 2003
  • The purpose of this study is to evaluate efficiency by the Life Cycle Cost(LCC) analysis of floor covering materials for remodeling. This study has been performed as a case study. The LCC analysis is a technique which takes account into both initial-future costs and benefits of an investment over some period of time. LCC is important in commercial decision making because it provides improved assessment of the living-term cost effectiveness of construction projects as well as alternative economic methods that focus on initial costs. For LCC analysis and comparison, the present value technique is used. The results of this study are summarized as follows; (1) A LCC analysis model of floor covering materials is suggested through a case study (2) As a result of LCC case study, the type of sheet is analysed more economical than that of tile in floor covering materials.

강상자형교의 생애주기비용 최적설계 (Life-Cycle Cost Optimization for Steel Box Girder Bridges)

  • 조효남;민대홍;권우성;정기영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.128-136
    • /
    • 2001
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost (LU) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and crack. To demonstrate the effect of LCC optimum design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges design. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to more rational, economical and safer design.

  • PDF

성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석 (Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models)

  • 구본성;한상훈;조중연
    • 대한토목학회논문집
    • /
    • 제33권5호
    • /
    • pp.2081-2091
    • /
    • 2013
  • 최근, 엔지니어링의 실무에서 토목 시설물의 설계 및 유지관리 단계를 위한 효과적인 생애주기비용(Life Cycle Cost; LCC) 산정 방법의 실무적인 적용에 대한 요구가 높아지고 있다. 이와 같이, 21세기에 들어 엔지니어링의 최적 의사결정의 실무적 문제에 가치공학과 더불어 생애주기비용 분석은 새로운 패러다임으로 주목받고 있지만 이러한 연구 개발의 괄목할만한 진보에도 불구하고, 대부분의 설계단계 생애주기비용 분석은 확정적, 확률적 분석기법에 그치고 있고 적용 가능한 구조물도 일반 교량에 국한되어 있다. 따라서 본 논문은 설계단계 생애주기비용 분석에 대한 실용적이고 합리적인 신뢰성해석 기반 성능저하 모델을 고려하여 기존의 분석방법을 업데이트하는 분석 방법론을 개발하고 이를 특수교인 사장교에 적용하는데 목적이 있다. 이에 현재가치의 합으로 표현되는 직/간접 유지관리비용을 기존 방법과는 다르게 기대 성능저하모델에 바탕을 둔 최적 유지관리 시나리오를 통한 생애주기비용 분석 기법으로 제시하였다. 마지막으로 본 논문에서 제안한 업데이트된 생애주기비용 분석의 방법론을 실제 고속도로 사장교 건설 프로젝트의 설계단계 의사결정 문제에 적용하여 합리적이고 체계적인 분석 방법 및 최적의사결정과정을 제시하였다.

Life cycle cost analysis and smart operation mode of ground source heat pump system

  • Yoon, Seok;Lee, Seung-Rae
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.743-758
    • /
    • 2015
  • This paper presents an advanced life cycle cost (LCC) analysis of a ground source heat pump (GSHP) system and suggests a smart operation mode with a thermal performance test (TPT) and an energy pile system constructed on the site of the Incheon International Airport (IIA). First, an economic analysis of the GSHP system was conducted for the second passenger terminal of the IIA considering actual influencing factors such as government support and the residual value of the equipment. The analysis results showed that the economic efficiency of the GSHP system could be increased owing to several influential factors. Second, a multiple regression analysis was conducted using different independent variables in order to analyze the influence indices with regard to the LCC results. Every independent index, in this case the initial construction cost, lifespan of the equipment, discount rate and the amount of price inflation can affect the LCC results. Third, a GSHP system using an energy pile was installed on the site of the construction laboratory institute of the IIA. TPTs of W-shape and spiral-coil-type GHEs were conducted in continuous and intermittent operation modes, respectively, prior to system operation of the energy pile. A cooling GSHP system in the energy pile was operated in both the continuous and intermittent modes, and the LCC was calculated. Furthermore, the smart operation mode and LCC were analyzed considering the application of a thermal storage tank.

철도 궤도의 수명주기비용 분석 : 고속철도 자갈궤도와 콘크리트궤도 사례 연구 (Analysis of Life Cycle Costs of Railway Track : A Case Study for Ballasted and Concrete Track for High-Speed Railway)

  • 장승엽
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권2호
    • /
    • pp.110-121
    • /
    • 2016
  • 구조 형식이나 공법의 선정, 유지보수 시기, 보수방법의 결정 등의 의사 결정에서 수명주기비용(life cycle cost, LCC)의 평가가 중요하다. 철도 궤도구조의 경우 초기시공비 뿐 아니라 유지보수비가 총 비용의 상당 부분을 차지하고, 특히 자갈궤도일수록 그 비율은 더욱 높으므로 수명주기비용 평가의 필요성이 더욱 높다. 이 연구에서는 궤도 구조 형식, 연간 통행량, 축중, 열차 속도, 곡선 비율, 구조물(교량, 터널) 비율 등 다양한 설계변수를 고려할 수 있는 LCC 산정 모델을 개발하고, 각 비용의 산정에 필요한 기초 자료를 제시하였으며 구축된 모델과 자료를 바탕으로 주요 설계변수에 따른 고속철도 자갈궤도와 콘크리트궤도 LCC의 변화 경향을 분석하고, 이로부터 궤도 LCC 분석에 있어서의 고려해야 할 주요 변수를 검토하였다. 검토 결과 자갈궤도는 교체 및 운영 비용의 비중이 콘크리트궤도에 비해 현저히 높았으며, 연간 통행량과 자갈 탬핑 주기가 자갈궤도의 LCC에 가장 큰 영향을 미치는 것으로 나타났다. 반면 콘크리트궤도는 초기 시공비의 비중이 현저히 높았고, 연간 통행량이나 열차속도, 축중 등에 상대적으로 영향을 적게 받는 것으로 나타났다.

입환기관차의 LCC 평가분석 (Life-Cost-Cycle Evaluation Analysis of the Shunting Locomotive)

  • 배대성;정종덕
    • 한국철도학회논문집
    • /
    • 제8권3호
    • /
    • pp.260-266
    • /
    • 2005
  • The deterioration of a shunting locomotive was characterized for the lifetime assessment. The locomotive has been used for shunting works in steel making processes, and in this investigation, various types of technical evaluation methods for the locomotive parts were employed to assess the current deterioration status and to provide important clue for lifetime prediction. Unlike other rolling stocks in railway applications, the diesel shunting locomotive is composed of major components such as diesel engine, transmission, gear box, brake system, electronic devices, etc., which cover more than 70 percent of the total price of the locomotive. Therefore, in this paper, each part of major components in the diesel locomotive was analyzed in terms of the degree of deterioration. The lift-cycle-cost (LCC) analysis was performed based on the maintenance and repair history as compared with economical cost to provide the cost-effective prediction, i.e., to assess either repair for reuse or putting the locomotive out of service based on cost-effective calculation.

불확실성을 고려한 철도 교량의 LCC분석 시스템 개발 (Development of Uncertainty-Based Life-Cycle Cost System for Railroad Bridges)

  • 조중연;선종완;김이현;조효남
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1158-1164
    • /
    • 2007
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedentedly in civil engineering practice. Accordingly, it is expected that the life-cycle cost in the 21st century will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, so far, most researches in Koreahave only focused on roadway bridges, which are not applicable to railway bridges. Thus, this paper presents the formulation models and methods for uncertainty-based LCCA for railroad bridges consideringboth objective statistical data available in the agency database of railroad bridges management and subjective data obtained form interviews with experts of the railway agency, which are used to anew uncertainty-based expected maintenance/repair costs including lifetime indirect costs. For reliable assessment of the life-cycle maintenance/repair costs, statistical analysis considering maintenance history data and survey data including the subjective judgments of railway experts on maintenance/management of railroad bridges, are performed to categorize critical maintenance items and associated expected costs and uncertainty-based deterioration models are developed. Finally, the formulation for simulation-based LCC analysis of railway bridges with uncertainty-based deterioration models are applied to the design-decision problem, which is to select an optimal bridge type having minimum Life-Cycle cost among various railway bridges types such as steel plate girder bridge, and prestressed concrete girder bridge in the basic design phase.

  • PDF

자기부상열차 시스템의 수명주기비용 모델링에 관한 연구 (A Study on Modeling of Life Cycle Cost for Magnetic Levitation Train)

  • 이윤성;김진오;김형철;장동욱
    • 한국철도학회논문집
    • /
    • 제12권6호
    • /
    • pp.1076-1080
    • /
    • 2009
  • 수명주기비용(Life Cycle Cost, LCC) 분석이란 분석 대상의 수명주기 전 기간에 걸친 총 원가산정을 통하여 해당 시스템을 평가하는 것이다. 철도시스템은 급전, 기계, 전기신호 등의 분야가 결합된 시스템으로 대규모 자본을 효율적으로 이용해야만 하는 문제를 안고 있다. 특히, 자기부상열차 시스템은 고도의 기술력이 필요하며 현재 국내에서 개발 단계에 있는 시스템으로, 비용 관련 연구가 더욱 필요한 실정이다. 따라서 국외의 철도시스템 및 자기부상열차 시스템에 대한 수명주기비용 연구 동향을 바탕으로 하여 국내의 자기부상열차 시스템에 적용할 수 있는 수명주기비용에 관한 모델을 제안하고자 한다.

Analysis of Economic Replacement Cycle of Power Transformer Based on LCC Considering Maintenance Effect

  • Park, Seung-Hwa;Jang, Kyeong-Wook;Kweon, Dong-Jin;Shon, Jin-Geun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1631-1637
    • /
    • 2018
  • Electric utilities has been considered the necessity to introduce asset management of electric power facilities in order to reduce maintenance cost of existing facilities and to maximize profit. This paper aims to provide data that can helpful to make profitable decision in terms of power transformers which have a significant part in the power system. Therefore, this study is modeling input cost for power transformer during its entire life and also the life cycle cost (LCC) technique is applied. In particular, the variation of transformer state related with maintenance and the variation of the EUAC curve based on cost and effect of maintenance is examined. In this study, the trend of the equivalent uniform annual cost (EUAC) according to maintenance cycle and cost of equipment is analyzed. In line with that, sensitivity analysis influenced by the changes of other cost factors was performed.