• 제목/요약/키워드: Life time estimation

검색결과 404건 처리시간 0.028초

와이블 분포를 이용한 에폭시 복합체의 수명시간 예측 (An Estimation of Life Time in Epoxy Composites Using Weibull Distribution)

  • 오현석;이동규;장인범;박건호;김용주;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.360-363
    • /
    • 1997
  • The method of estimating life time of epoxy composites which be widely used for transformers has been studied in this paper. The breakdown properties of specimens are observed by appling high AC voltage at the room temperature from a series of the experiments. Afterwards, the breakdown time was determined under the constant voltage below the lowest breakdown voltage. Also, V-t properties were found out using weibull distribution widely used in the applications of discrete data for estimating life time of epoxy composites and life exponent n was gained properly. when life exponent is gained is found out, the tong breakdown life time at used voltage can be estimated from breakdown experiments in short time using reverse law of n power.

  • PDF

유지보수정보 주기를 고려한 KTX-1 모터블럭 개발품의 수명주기비용 예측 (The Life Cycle Cost Estimation for Domestic Products Motor Block of KTX-1 Considering Periodic Maintenance)

  • 윤차중;노명규;김재문
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.288-292
    • /
    • 2013
  • This paper presents the result of life-cycle cost (LCC) estimation for domestic products propulsion control system (motor block unit) of KTX-1 considering periodic maintenance. Life cycle costing is one of the most effective approaches for the cost analysis of long-life systems such as the KTX-1. Life cycle costing includes the cost of concept design, development, manufacture, operation, maintenance and disposal. To estimate LCC for domestic products motor block unit, it was analyzed physical breakdown structure (PBS) on motor unit in view of maintenance cost and unit cost etc. As a results, life cycle cost on motor block unit increased moderately expect for periodical time when major parts are replaced at the same time. hereafter this results will be reflected in the domestic products being developed.

ARIMA 모형을 이용한 한육우 사육두수 추정 (Estimation of the Number of Korean Cattle Using ARIMA Model)

  • 전상곤;박한울
    • 농업생명과학연구
    • /
    • 제45권5호
    • /
    • pp.115-126
    • /
    • 2011
  • 이 논문은 국내 한육우 사육두수를 시계열 모형인 ARIMA 모형을 이용하여 추정하였다. 소의 생리학적 특성을 반영하기 위하여 한육우 사육두수를 총 여섯 개의 범주(4개의 도축률과 2개의 출생률)로 나누었다. 이 여섯 가지 범주에 대해 ARIMA 모형을 적용하여 Box-Jenkins 절차에 따라 그 값들을 추정하고 예측하였다. 큰암소도축률과 큰수소도축률은 단위근을 갖는 불안정시계열로 나타나 차분하여 안정화시키고 나머지 4개의 변수들은 안정시계열로 나타나 그대로 모형의 식별, 추정 그리고 예측에 사용하였다. 분석결과, 한육우 사육두수는 2012년을 최고점으로 점점 감소하다가 2018년을 최저점으로 다시 증가할 것으로 분석되었다.

A new model based on Lomax distribution

  • Alshingiti, Arwa M.;Kayid, M.;Aldossary, H.
    • International Journal of Reliability and Applications
    • /
    • 제15권1호
    • /
    • pp.65-76
    • /
    • 2014
  • In this article, a new model based on Lomax distribution is introduced. This new model is both useful and practical in areas such as economic, reliability and life testing. Some statistical properties of this model are presented including moments, hazard rate, reversed hazard rate, mean residual life and mean inactivity time functions, among others. It is also shown that the distributions of the new model are ordered with respect to the strongest likelihood ratio ordering. The method of moment and maximum likelihood estimation are used to estimates the unknown parameters. Simulation is utilized to calculate the unknown shape parameter and to study its properties. Finally, to illustrate the concepts, the appropriateness of the new model for real data sets are included.

  • PDF

간결한 예측 모형에 기반한 납축전지의 정전류-정전압 충전시간 특성화 (CC-CV Charging Time Characteristics of Lead-Acid Batteries Based on Compact Estimation Model)

  • 한정견;신동화
    • 대한임베디드공학회논문지
    • /
    • 제11권5호
    • /
    • pp.305-312
    • /
    • 2016
  • Modern embedded systems are typically operated by the rechargeable batteries in our daily life. Since charge of batteries is considered as an time consuming task, there have been extensive efforts to manage the charge time from the perspective of materials, circuits, and systems. Estimation of battery charge time is one of the essential information to design the charge circuitry. A compact macro model for the constant-current and constant-voltage charge protocol was recently introduced, which gives us a quick estimation of charge time with similar shape to the famous Peukert's law for discharge time estimation. The CC-CV charging protocol is widely used for Lithium-based batteries and Lead-acid batteries. In this paper, we characterize the lead-acid battery by measurement to extract the model coefficients, which was not covered by the previous studies. By our proposed model, the key coefficient Kcc results in 1.18-1.31, which is little bit higher than that of Lithium batteries. The accuracy of our model is within the range of ${\pm}10%$ error, which is compatible with the other studies such as Peukert's law.

Alloy 617의 장시간 크리프 수명 예측을 위한 다중회귀 선형 모델의 제안 및 평가 (Suggestion and Evaluation of a Multi-Regression Linear Model for Creep Life Prediction of Alloy 617)

  • 윤송남;김우곤;정익희;김용완
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.366-372
    • /
    • 2009
  • Creep life prediction has been commonly used by a time-temperature parameter (TTP) which is correlated to an applied stress and temperature, such as Larson-Miller (LM), Orr-Sherby-Dorn (OSD), Manson-Haferd (MH) and Manson-Succop (MS) parameters. A stress-temperature linear model (STLM) based on Arrhenius, Dorn and Monkman-Grant equations was newly proposed through a mathematical procedure. For this model, the logarithm time to rupture was linearly dependent on both an applied stress and temperature. The model parameters were properly determined by using a technique of maximum likelihood estimation of a statistical method, and this model was applied to the creep data of Alloy 617. From the results, it is found that the STLM results showed better agreement than the Eno’s model and the LM parameter ones. Especially, the STLM revealed a good estimation in predicting the long-term creep life of Alloy 617.

감마과정 모델을 적용한 포구속도 저하량에 따른 저장수명 예측기법 연구 (A Study on the Storage Life Estimation Method for Decrease of Muzzle Velocity using Gamma Process Model)

  • 박성호;김재훈
    • 한국군사과학기술학회지
    • /
    • 제16권5호
    • /
    • pp.639-645
    • /
    • 2013
  • The aim of the study is to investigate the method to estimate a storage life of propelling charge on the decrease of muzzle velocity by stochastic gamma process model. It is required to establish criterion for state failure to estimate the storage life and it is defined in this paper as a muzzle velocity difference between reference value and maximum allowable standard deviation multiplied by 6. The relationship between storage time and muzzle velocity is investigated by nonlinear regression analysis. The stochastic gamma process model is used to estimated the state distribution and the life distribution for storage time for 155mm propelling charge KM4A2 because the regression analysis is a deterministic method and it can't describe the distribution of life for storage time.

Locating the Change Point of Mean Residual Life of Certain Life Distributions

  • Li, Xiaohu
    • International Journal of Reliability and Applications
    • /
    • 제3권2호
    • /
    • pp.91-98
    • /
    • 2002
  • A class of life distributions, whose mean residual life keeps stable at its earlier phase and then starts to decrease in time, is proposed to model the life of an element haying survived its burn-in. A strongly consistent estimator and a nonparametric testing procedure are developed to locate the occurrence of the change-point of the mean residual life. Finally, some numerical simulations are employed to be an illustration as well.

  • PDF

소성변형 밀 마멸에 대한 열간 단조 금형의 수명 평가 (Life Estimation of Hot Forging Die by Plastic Deformation and Wear)

  • 이현철;김병민;김광호
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.66-75
    • /
    • 2003
  • This paper describes about the estimation method of die lift by wear and plastic deformation in hot forging process. The thermal load and the thermal softening are happened by the high temperature in hot forging process. Tool lift decreases considerably due to the softening of the surface layer of a tool caused by high thermal load and long contact time between tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affects die accuracy and tool lift are wear and the plastic deformation of a die. The new developed technique for predicting tool life applied to estimate the production quantity for a spindle component and these techniques assist to improve the tool life in hot forging process.

Comparison of Two Nondestructive Methods of Leaf Area Estimation

  • Woo, Hyo-Jin;Park, Yong-Mok
    • Journal of Ecology and Environment
    • /
    • 제32권1호
    • /
    • pp.61-65
    • /
    • 2009
  • We compared two nondestructive methods for leaf area estimation using leaves of 16 common plant species classified into six types depending on leaf shape. Relatively good linear relationships between actual leaf area (LA) and leaf length (L), width (W), or the product of length and width (LW) were found for ordinary leaves with lanceolate, oblanceolate, linear and sagitttate shapes with entire margins, serrate margins, mixed margins with a entire form and shallow lobes, and ordinary incised margins. LA was better correlated with LW than L or W, with $R^2$ > 0.91. However, for deeply incised lobes, LA estimation using LW showed low correlation coefficient values, indicating low accuracy. On the other hand, a method using photographic paper showed a good correlation between estimates of area based on the mass of a cut-out leaf image on a photographic sheet (PW) and actual leaf area for all types of leaf shape. Thus, the PW method for LA estimation can be applied to all shapes of leaf with high accuracy. The PW method takes a little more time and has a higher cost than leaf estimation methods using LW based on leaf dimensions. These results indicate that researchers should choose their nondestructive LA estimation method according to their research goals.