• Title/Summary/Keyword: Life Cycle Cost Optimization

Search Result 83, Processing Time 0.025 seconds

Economic Life Assessment of Power Transformer using HS Optimization Algorithm (HS 최적화 알고리즘을 이용한 전력용 변압기의 경제적 수명평가)

  • Lee, Tae-bong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.123-128
    • /
    • 2017
  • Electric utilities has been considered the necessity to introduce AM(asset management) of electric power facilities in order to reduce maintenance cost of existing facilities and to maximize profit. In order to make decisions in terms of repairs and replacements for power transformers, not only measuring by counting parts and labor costs, but comprehensive comparison including reliability and cost is needed. Therefore, this study is modeling input cost for power transformer during its entire life and also the life cycle cost (LCC) technique is applied. In particular, this paper presents an application of heuristic harmony search(HS) optimization algorithm to the convergence and the validity of economic life assessment of power transformer from LCC technique. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. The effectiveness of the proposed identification method has been demonstrated through an economic life assessment simulation of power transformer using HS optimization algorithm.

Optimal Life Cycle Cost Design of a Bridge (교량의 생애주기비용 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.115-122
    • /
    • 2010
  • The importance of the life cycle cost (LCC) analysis for bridges has been recognized over the last decade. However, it is difficult to predict LCC precisely since the costs occurring throughout the service life of the bridge depend on various parameters such as design, construction, maintenance, and environmental conditions. This paper presents a methodology for the optimal life cycle cost design of a bridge. Total LCC for the service life is calculated as the sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The optimization method is applied to design of a bridge structure with minimal cost, in which the objective function is set to LCC and constraints are formulated on the basis of Korean Bridge Design Code. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on damage probabilities to consider the uncertainty of load and resistance. Repair and rehabilitation cost is determined using load carrying capacity curves and user cost includes traffic operation costs and time delay costs. The optimal life cycle cost design of a bridge is performed and the effects of parameters are investigated.

Optimum maintenance scenario generation for existing steel-girder bridges based on lifetime performance and cost

  • Park, Kyung Hoon;Lee, Sang Yoon;Yoon, Jung Hyun;Cho, Hyo Nam;Kong, Jung Sik
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.641-653
    • /
    • 2008
  • This paper proposes a practical and realistic method to establish an optimal lifetime maintenance strategy for deteriorating bridges by considering the life-cycle performance as well as the life-cycle cost. The proposed method offers a set of optimal tradeoff maintenance scenarios among other conflicting objectives, such as minimizing cost and maximizing performance. A genetic algorithm is used to generate a set of maintenance scenarios that is a multi-objective combinatorial optimization problem related to the lifetime performance and the life-cycle cost as separate objective functions. A computer program, which generates optimal maintenance scenarios, was developed based on the proposed method using the life-cycle costs and the performance of bridges. The subordinate relation between bridge members has been considered to decide optimal maintenance sequence and a corresponding algorithm has been implemented into the program. The developed program has been used to present a procedure for finding an optimal maintenance scenario for steel-girder bridges on the Korean National Road. Through this bridge maintenance scenario analysis, it is expected that the developed method and program can be effectively used to allow bridge managers an optimal maintenance strategy satisfying various constraints and requirements.

Optimal Target Reliability of Bridges Based on Minimum Life-Cycle Cost Consideration

  • Wang, Junjie;Lee, J-C
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • Cost-effectiveness in design is considered for determining the target reliability of concrete bridges under seismic actions. This objective can be achieved based on the economic optimization of the expected life-cycle cost of a bridge, which includes initial cost, direct losses, and indirect losses of a bridge due to strong earthquakes over its lifetime. A separating factor is defined to consider the redundancy of a transportation network. The Park-Ang damage model is employed to define the damage of a bridge under seismic action, and a Monte Carlo method based on the DRAIN-2DX program is developed to assess the failure probability of a bridge. The results for an example bridge analyzed in this paper show that the optimal target failure probability depends on the traffic volume carried by the bridge and is between 1.0×10/sup -3/ to 3.0×10/sup -3/ over a life of 50 years.

  • PDF

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

Comparative Study on Size Optimization of a Solar Water Heating System in the Early Design Phase Using a RETScreen Model with TRNSYS Model Optimization (RETScreen 모델이용 태양열온수시스템 초기설계단계 설계용량 최적화기법의 TRNSYS 모델과의 비교분석)

  • Lee, Kyoung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.693-699
    • /
    • 2013
  • This paper describes a method for size optimization of the major design variables for solar water heating systems at the stage of concept design. The widely used RETScreen simulation tool was used for optimization. Currently, the RETScreen tool itself does not provide a function for optimization of the design parameters. In this study, an optimizer was combined with the software. A comparative study was performed to evaluate the RETScreen-based approach with the case study of a solar heating system in an office building. The optimized results using the RETScreen model were compared to previously published results with the TRNSYS model. The objective function of the optimization is the life-cycle cost of the system. The optimized design results from the RETScreen model showed good agreement with the optimized TRNSYS results for the solar collector area and storage volume, but presented a slight difference for the collector slope angle in terms of the converged direction of the solutions. The energy cost, life-cycle cost, and thermal performance regarding collector efficiency, system efficiency, and solar fraction were compared as well, and the RETScreen model showed good agreement with the TRNSYS model for the conditions of the base case and optimized design.

Development of Bridge Maintenance Method based on Life-Cycle Performance and Cost (생애주기 성능 및 비용에 기초한 교량 유지관리기법 개발)

  • Park, Kyung Hoon;Kong, Jung Sik;Hwang, Yoon Koog;Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1023-1032
    • /
    • 2006
  • In this paper, a new method for the bridge maintenance is proposed to overcome the limit of the existing methods and to implement the preventive bridge maintenance system. The proposed method can establish the lifetime optimum maintenance strategy of the deteriorating bridges considering the life-cycle performance as well as the life-cycle cost. The lifetime performance of the deteriorating bridges is evaluated by the safety index based on the structural reliability and the condition index detailing the condition state. The life-cycle cost is estimated by considering not only the direct maintenance cost but also the user and failure cost. The genetic algorithm is applied to generate a set of maintenance scenarios which is the multi-objective combinatorial optimization problem related to the life-cycle cost and performance. The study examined the proposed method by establishing a maintenance strategy for the existing bridge and its advantages. The result shows that the proposed method can be effectively applied to deciding the bridge maintenance strategy.

Scenario-based Design and Life Cycle Cost Analysis of Energy Supply System for Transportation Sector (도로운송부문용 에너지 공급 시스템 설계 및 경제성평가)

  • Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.164-173
    • /
    • 2015
  • This study aims to design energy supply systems from various energy sources for transportation sectors and comparatively analyze the life cycle cost of different scenario-based systems. For components of the proposed energy supply system, we consider a typical oil refinery, byproduct hydrogen system, renewable energy source (RES)-based electric generation system and existing electricity grid. We also include three types of vehicles in transportation sector such as internal combustion engine vehicle (ICEV), electric vehicle (EV), fuel cell vehicle (FCV). We then develop various energy supply scenarios which consist of such components and evaluate the economic performance of different systems from the viewpoint of life cycle cost. Finally we illustrate the applicability of the proposed framework by conducting the design problem of energy supply systems of Jeju, Korea. As the results of life cycle cost analysis, EV fueled by electricity from grid is the most economically feasible. In addition, we identify key parameters to contribute the total life cycle cost such as fuel cost, vehicle cost, infra cost and maintenance cost using sensitivity analysis.

Optimization Design of Solar Water Heating System based on Economic Evaluation Criterion using a Genetic Algorithm (유전알고리즘 이용 경제적 평가기준에 따른 태양열급탕시스템 최적화 설계에 관한 연구)

  • Choi, Doosung;Ko, Myeongjin;Park, Kwang-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.73-89
    • /
    • 2016
  • To assure maximum economic benefits and the energy performance of solar water heating systems, the proper sizing of components and operating conditions need to be optimized. In recent years, a number of studies to design optimally solar water heating systems have been tried. This paper presents a design method for optimizing the various capacity-related and installation-related design variables based on life cycle cost using a genetic algorithm. The design variables considered in this study included the types and numbers of solar collector and auxiliary heaters; the types of storage tanks and heat exchangers; the solar collector slope; mass flow rates of the fluid on the hot and cold sides. The suggested method was applied for optimizing a solar water heating system for an elementary school in Seoul, South Korea. In addition, the effectiveness of the proposed optimization method was assessed by analyzing the obtained optimal solutions of six case studies, each of which was simulated with different solar fractions. It is observed that a trade-off between the equipment cost and the energy cost results in an optimal design that yields the lowest life cycle cost. Therefore, it could be helpful to apply the optimal solar water heating system by comparing the various design solutions obtained by using the optimization method instead of the engineer's experience and intuition.

The Model to Generate Optimum Maintenance Scenario for Steel Bridges considering Life-Cycle Cost and Performance (강교량의 최적 유지관리 시나리오 선정 모델)

  • Park, Kyung Hoon;Lee, Sang Yoon;Kim, Jung Ho;Cho, Hyo Nam;Kong, Jung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.677-686
    • /
    • 2006
  • In this paper, a more practical and realistic method is proposed to establish the lifetime optimum maintenance strategies of the deteriorating bridges considering the life-cycle performance as well as life-cycle cost. The genetic algorithm is applied to generate the set of maintenance scenarios that is the multi-objective combinatorial optimization problem related to lifetime performance and cost as separate objective functions, and the technique to select optimum tradeoff maintenance scenario is presented. Optimum maintenance scenarios could be generated not only at the individual member level but also at the system level of the bridge. Through the analytical results of applying the proposed methodology to the existing bridge, it is expected that the methodology will be effectively used to determine the optimum maintenance strategy for introducing a real preventive maintenance system and overcoming the limits of existing maintenance methods.