• Title/Summary/Keyword: Lie algebroid morphism

Search Result 1, Processing Time 0.014 seconds

DIFFERENT CHARACTERIZATIONS OF CURVATURE IN THE CONTEXT OF LIE ALGEBROIDS

  • Rabah Djabri
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.923-951
    • /
    • 2024
  • We consider a vector bundle map F : E1 → E2 between Lie algebroids E1 and E2 over arbitrary bases M1 and M2. We associate to it different notions of curvature which we call A-curvature, Q-curvature, P-curvature, and S-curvature using the different characterizations of Lie algebroid structure, namely Lie algebroid, Q-manifold, Poisson and Schouten structures. We will see that these curvatures generalize the ordinary notion of curvature defined for a vector bundle, and we will prove that these curvatures are equivalent, in the sense that F is a morphism of Lie algebroids if and only if one (and hence all) of these curvatures is null. In particular we get as a corollary that F is a morphism of Lie algebroids if and only if the corresponding map is a morphism of Poisson manifolds (resp. Schouten supermanifolds).