In this study, we delve into the effects of personalization algorithms on the creation of "filter bubbles," which can isolate individuals intellectually by reinforcing their pre-existing biases, particularly through personalized Google searches. By setting up accounts with distinct ideological learnings-progressive and conservative-and employing deep neural networks to simulate user interactions, we quantitatively confirmed the existence of filter bubbles. Our investigation extends to the deployment of an LSTM model designed to assess political orientation in text, enabling us to bias accounts deliberately and monitor their increasing ideological inclinations. We observed politically biased search results appearing over time in searches through biased accounts. Additionally, the political bias of the accounts continued to increase. These results provide numerical evidence for the existence of filter bubbles and demonstrate that these bubbles exert a greater influence on search results over time. Moreover, we explored potential solutions to mitigate the influence of filter bubbles, proposing methods to promote a more diverse and inclusive information ecosystem. Our findings underscore the significance of filter bubbles in shaping users' access to information and highlight the urgency of addressing this issue to prevent further political polarization and media habit entrenchment. Through this research, we contribute to a broader understanding of the challenges posed by personalized digital environments and offer insights into strategies that can help alleviate the risks of intellectual isolation caused by filter bubbles.
This study empirically confirmed 'the political bias of the YouTube recommendation algorithm' and 'the selective exposure of user' to verify the Filter Bubble phenomenon of YouTube. For the experiment, two new YouTube accounts were opened and each account was trained simultaneously in a conservative and a liberal account for a week, and the "Recommended" videos were collected from each account every two days. Subsequently, through the text mining method, the goal of the research was to investigate whether conservative videos are more recommended in a righties account or lefties videos are more recommended in a lefties account. And then, this study examined if users who consumed political news videos via YouTube showed "selective exposure" received selected information according to their political orientation through a survey. As a result of the Text Mining, conservative videos are more recommended in the righties account, and liberal videos are more recommended in the lefties account. Additionally, most of the videos recommended in the righties/lefties account dealt with politically biased topics, and the topics covered in each account showed markedly definitive differences. And about 77% of the respondents showed selective exposure.
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.495-508
/
2023
To compare whether broadcast fact-checking news, which aims to overcome the limitations of objective reporting, ensures fairness, we analyzed 227 fact-checked news stories aired on the main news of KBS, MBC SBS, TV Chosun, JTBC MBN, and YTN from January 1, 2022 to May 31, 2022, when the 20th presidential and local election campaigns were held. The analysis showed clear differences in fact-checking targets and narratives by broadcasters. In general, MBC, JTBC,and YTN were more likely to favor liberal parties such as the Democratic Party, while TV Chosun had a lot of narratives favoring the conservative camp. SBS and MBN were relatively neutral. KBS seemed to be trying to remain outwardly neutral. SBS and TV Chosun were the most active in fact-checking, but they covered a wide range of issues and were characterized by a bias toward contextualizing issues that viewers were curious about, rather than clarifying the facts. The projection of ideological bias by broadcasters in fact-checking narratives is a challenge that needs to be overcome.
The polarization of public opinion by regionalism is one of biggest problems in Korean society. This study attempts to examine the polarization of public opinion between two typical cities representing regionalism and explore the factors influencing on the polarization. The results show that the polarization of public opinion is based on the perceived public opinion rather than the real public opinion. The polarization of public opinion is greater with regional issue than national issue. In general, citizens of Pusan have a conservative bias in estimating other Pusan citizens' opinion and a liberal bias in estimating Gwangju citizens' opinion, whereas citizens of Gwangju have a looking-glass perception in estimating other Gwangju citizens' opinion and a conservative bias in estimating Pusan citizens' opinion. There are no significant differences of the real public opinion and the perceived opinion across three generations. But within each generation, the tendency of public opinion polarization is found between regions and is not shown to change over generations. Regression analyses show that individual's opinion and region are highly predictable variables that explain the perceived public opinion and the perception bias such as false consensus and pluralistic ignorance.
Cho, Dan Bi;Lee, Hyun Young;Jung, Won Sup;Kang, Seung Shik
KIPS Transactions on Software and Data Engineering
/
v.10
no.1
/
pp.1-8
/
2021
In the political field of news articles, there are polarized and biased characteristics such as conservative and liberal, which is called political bias. We constructed keyword-based dataset to classify bias of news articles. Most embedding researches represent a sentence with sequence of morphemes. In our work, we expect that the number of unknown tokens will be reduced if the sentences are constituted by subwords that are segmented by the language model. We propose a document embedding model with subword tokenization and apply this model to SVM and feedforward neural network structure to classify the political bias. As a result of comparing the performance of the document embedding model with morphological analysis, the document embedding model with subwords showed the highest accuracy at 78.22%. It was confirmed that the number of unknown tokens was reduced by subword tokenization. Using the best performance embedding model in our bias classification task, we extract the keywords based on politicians. The bias of keywords was verified by the average similarity with the vector of politicians from each political tendency.
Doctoral Candidate, Department of Communication, Pusan National University This study analyzed the political and social significance of the disaster accident news with the frame and bias concept. In particular, this study confirmed theoretically how domestic media biased frame when it presents problem definition, causing interpretation, moral evaluation, and post-prescription on the ferry Sewol accident, In addition, the bias of the frame was analyzed comparing what is the difference between the conservative newspapers and liberal newspapers. Findings are as follows. First, in diagnosis of ferry Sewol accident, news slanted fragmentation frame>personalization frame>authority-disorder frame. The Chosun Ilbo focus on fragmentation bias, meanwhile Hankyoreh focus on the authority disorder relatively. Second, in accident evaluation, responsibility frame> moral frame> problem-solution frame. The Chosun Ilbo focus on responsibility frame and moral frame. But Hankyoreh focus on responsibility frame and problem-solution frame. Third, in the matter of responsibility, government frame>personal frame>organizational frame. Chosun Ilbo biased responsibility of the government and individuals, while the Hankyoreh is relatively more emphasis on government responsibility and the responsibility of the organization also showed. Fourth, in problem solving, thematic frame and episodic frame bias appeared as rough and level. Chosun Ilbo showed episodic frame, Hankyoreh showed thematic frame. News frame and bias as well as ideological differences of media on ferry Sewol accident was discussed in the context of the social dimension.
Fake news is flooded with fake news that mixes untrue falsehoods in whole or in part. In order to create a frame for political and social purposes, news is mainly created by combining facts with fakes, or news is created for the purpose of incitement to encourage distortion and hatred. In particular, some media, including over-the-air broadcasting, are expressing their political bias in a specific direction without hesitation. Even if the press has political bias, if it is based on the delivery of facts, a trusted media environment can be achieved under the mutual checks of conservatives and progressives. The May 18 Democratic Uprising is a painful history and fact of modern history, leaving remuneration and progress. Nevertheless, there is still a view that the May 18 Democratic Uprising is regarded as 'democracy movement' and 'violence'. This study analyzed how the conservative JoongAng Ilbo and the progressive Kyunghyang Shinmun Manpyeong deal with the May 18 Democratic Uprising. The Manpyeong of the two newspapers differs greatly from the viewpoint of the May 18 Democratic Uprising. The liberal tendency of the Kyunghyang Shinmun Manpyeong has great significance in that it reveals the essence of the event and satirizes the subject. On the other hand, the conservative JoongAng Ilbo Manpyeong cannot approach the nature of the case or the object of satire due to ambiguity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.