• Title/Summary/Keyword: LiClO₄

Search Result 328, Processing Time 0.035 seconds

Electrochemical Behavior of Lithium-Iron Oxide Electrode and Measurement of Chemical Diffusion Coefficient of Lithium (리튬-철계 산화물 전극의 전기화학 거동 및 리튬의 화학확산 계수 측정)

  • Lee Joung-Jun;Chong Won-Jung;Ju Jeh-Beck;Sohn Tai-Won;Cho Won-Il;Cho Byung-Won;Kim Hyung-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.139-145
    • /
    • 2001
  • Various compositions of iron oxide based materials as a cathode of lithium secondary battery have been fabricated and tested with electrochemical method. A layered form of $LiFeO_2$ was synthesized by mixing and heating the initial materials of $FeCl_3\;6H_2O,\;LiOH$ and NaOH at low temperature. The effect of changing the precursors composition was investigated. As a result, when increasing the additive amount of NaOH, the capacity of the electrode is decreased but the performance and declining rate of capacity became smaller. $LiFeO_2$ synthesized with the weight ratio of $NaOH/FeCl_3/LiOH,\;2/1/7$ showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles. Charge-discharge tests of lithium cells with $LiFeO_2$ cathode having the layer structure were performed. This cell showed the reversibility in the range of 1.5-4.5V of cell voltage. By using CPR method, chemical diffusion coefficients were measured in 1M $LiPF_6/EC/DEC$ solution. The value of chemical diffusion coefficient decreased with increasing the lithium content x, In 0.5$10^{-11}^cm^2/s$.

Preparation and Characterization of Elastomeric Solid Electrolyte Based on $PEO-EDA-LiClO_4$ Blends ($PEO-EDA-LiClO_4$ 블렌드계 탄성체 전해질의 제조와 특성)

  • Chang, Young-Wook;Joo, Hyun-Seok
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.36-41
    • /
    • 2004
  • Solid polymer electrolytes were prepared by UV irradiation of the blends consisting of poly(ethylene oxide)(PEO), epoxy diacrylate(EDA) and LiClO_4$. Conductivities of the electrolyte films were measured as a function or blend composition, salt concentration and temperature. The electrolyte having the composition of poly(ethylene oxide) (70% by weight)/epoxy diacrylate (30% by weight) with mole ratio of 10 of ethylene $oxide/Li^+$ exhibited a high ionic conductivity of $1.2{\times}10^{-5} S/cm$ at $25^{\circ}C$. This blend is transparent and shows elastomeric properties. Morphological studies by means of differential scanning calorimetry, X-ray diffraction and polarized optical microscopy indicated that the cured epoxy chains in the blends inhibit the crystallization of poly (ethylene oxide) and thereby induce the blend systems to be completely amorphous in certain compositions.

A Study on $Na^+$ and Water Reabsorption in the Nephron Segment Beyond Proximal Tubule Measured by Lithium Clearance

  • Han, O-Soo;Goo, Yong-Sook;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.189-200
    • /
    • 1991
  • During the past few years it has been proposed that lithium clearance can be used as a reliable measure for the outflow of tubular fluid from the proximal tubule. This study was aimed to characterize the inflow dependent reabsorption of Na in renal tubule beyond the proximal tubule. For this purpose, lithium clearance was used as a measure for the inflow from the proximal tubule and the changes in reabsorption fraction of Na and water were determined in rabbits. Rabbits were pretreated with hypotonic saline solutions for an hour (50 mM/L NaCl, 20 ml/hr/kg). And then a hypertonic solution of 500 mM/L NaCl (20 ml/kg) was administered intraperitoneally in conjunction with a bolus of LiCl solution (2 mM/kg, i.v.) for conditioning the $C_{Li}$ and urine flow rate. To rule out the effect of $Li^+$ on tubular functions, a bolus of NaCl solution (2 mM/kg, i.v.) was administered. Fifteen, thirty, and sixty minutes after injection of hypertonic saline arterial blood and urine samples were taken. Urinary and plasma concentrations as well as urinary output of $Li^+,\;Na^+\;and\;K^+$ were measured. From these $C_{Li},\;C_{Na}$ and the reabsorption fraction of Na and water $(Fr_{Na}\;&\;FrH_2O)$ were calculated. These results were compared with those from control groups in which the same amount of isotonic saline (145 mM/L NaCl) and of 15% dextran solution were administered in the same way as that in experimental group. Followings are the results obtained. 1) The plasma concentration of $Na^+$ in rabbits injected with hypertonic saline reached the peak value after 15 min and thereafter no significant change was observed. Hematocrit values did not show any change, while urinary excretion of $Na^+$ increased markedly during the first 15 min and decreased thereafter. These results were not affected by an injection of a small amount of LiCl. 2) The clearances of $Li^+,\;Na^+\;and\;K^+$ in rabbits injected with hypertonic saline and LiCl solution decreased. 3) In spite of the variation in $C_{Li},\;Fr_{Na}$ did not show any significant change while $FrH_2O$ increased gradually. 4) $C_{Li}$ decreased also in rabbits received isotonic saline. $Fr_{Na}$ tended to be higher than that in hypertonic saline group, while $FrH_2O\;and\;Fr_{Na}$ did not associated with the decrease in $C_{Li}$. 5) $C_{Li}$ of the rabbits received dextran solution fluctuated persistently and $Fr_{Na}\;and\;FrH_2O$ did not change in along with $C_{Li}$ although $Fr_{Na}$ had a tendency to be higher than that in hypertonic saline group. 6) From the above results it was concluded that: (a) In rabbits with normal body store of $Na^+$, the $Fr_{Na}$ of renal tubule beyond proximal tubule. calculated from $C_{Li}$ as a measure of inflow from proximal tubule is constant in spite of variations in $C_{Li}$. (b) The $FrH_2O$ calculated from $C_{Li}$ is dependent largely upon ADH rather than inflow from proximal tubule. (c) When there is a decrease in plasma $Na^+$ concentration or ineffective body fluid. $Li^+$ reabsorption may occur in the thick segnent of Henle's loop and hence the determination of $Fr_{Na}$ and $FrH_2O$ will not be easy one, but $Fr_{Na}$ is constant under the same experimental conditions.

  • PDF

$^{13}C$nmr Studies on the Interaction of Lithium Salts to Formamide, Acetamide and Propionamide Systems (Formamide, Acetamide 및 Propionamide계에 대한 리튬염의 상호작용에 관한 $^{13}C$ nmr 연구)

  • Dae-Ho Shin;Jo W. Lee;Young Sang Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.291-295
    • /
    • 1982
  • $^{13}C$resonances of carbonyl and various alkyl groups in amides are found to shift down-field on the interaction with lithium salts and it is shown that lithium ion binds directly to the carbonyl group in amides. The magnitudes of the $^{13}C$ chemical shifts of various amides depend not only on the size of alkyl groups in amides but also on the interaction with anion. The change of $^{13}C$chemical shift of amide in LiCl is smaller than that in$LiClO_4$ due to the difference of the charge density of the anion.

  • PDF

Reactivities of $Li_2ZrO_3/$honeycomb for $H_2S$ Removal ($H_2S$ 제거를 위한 $Li_2ZrO_3$/honeycomb의 반응 특성)

  • Park, Joo-Won;Kang, Dong-Hwan;Lee, Bong-Han;Yoo, Kyung-Seun;Lee, Jae-Gu;Kim, Jae-Ho;Han, Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1347-1352
    • /
    • 2005
  • [ $H_2S$ ] removal reaction using $Li_2ZrO_3/honeycomb$ has been carried out in a fixed bed reactor for the cleaning of syngas from the waste gasifier. $Li_2ZrO_3$ was synthesised using reagent-grade $Li_3CO_3$ and $ZrO_2$ with suitable amount of ethanol in a 1:1 ratio. And then $Li_2ZrO_3$ were calcined in air at $850{\sim}1000^{\circ}C$ for 14 h. The optimum condition of $H_2S$ removal reaction is around 20 wt% $Li_2ZrO_3$/honeycomb at 300 mL/min and $700^{\circ}C$. At this condition, removal amount of $H_2S$ was about 0.337 $g^{H_2S}/g^{sorbent}$. Addition of $K_2CO_3$, $Na_2CO_3$, NaCl and LiCl in the $Li_2ZrO_3$ remarkably improves the $H_2S$ removal capacity of modified $Li_2ZrO_3$/honeycomb up to 23%. Analyses of $Li_2ZrO_3/honeycomb$ sorbent by SEM and XRD showed that $Li_2ZrO_3$ was uniformly impregnated into honeycomb up to considerable amounts. Furthermore, the physicochemical properties of the sorbent did not vary much up to $1000^{\circ}C$.

Effect of Inorganic Salt Additives in Preparation of Polyethersulfone Phase Inversion Membrane (Polyethersulfone 상변환막 제조시 무기염 첨가 효과)

  • 이상덕;염경호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.87-90
    • /
    • 1998
  • 1. 서론 : 막 분리공정에 사용되고 있는 대부분의 고분자 막들은 침지침강(immersion precipitation) 상변환법에 의해 제조되고 있다. 침지침강 상변환법으로 제조된 막의 최종 구조는 고분자 캐스팅 용액의 열역학적 특성과 비용매와의 속도론적 특성에 따라 대칭형 또는 비대칭형 막구조를 갖게 된다. 고분자/용매로 이루어진 캐스팅 용액에 제3의 성분으로서 PVP, PEG, LiCl. ZnCl$_2$ 와 같은 유.무기물을 첨가시킴으로서 막구조 및 투과성능을 변화시킬 수 있다. 이러한 점에서 이들 첨가제를 pore-forming agent라 부르기도 한다. 본 연구에서는 상대적으로 열적.기계적 특성이 우수하고, 화학약품에 대한 안정성이 뛰어나 상변환 막의 소재물질로서 널리 사용되고 있는 Polyethersulfone(PES)을 막 소재 물질로 사용하여 PES/NMP 캐스팅 용액에 다양한 종류의 무기염[CaCl$_2$, LiCl, LiClO$_4$, Mg(ClO$_4)_2$, ZnCl$_2$]을 PES에 대한 중량비를 달리하여 첨가시켜 비대칭 막을 제조하여 무기염의 첨가가 막구조 형성 및 막투과 특성에 미치는 영향을 연구하였다. 이때 첨가된 무기염 및 첨가 중량비에 따른 영향을 PES/NMP/Salt 계의 coagulation value, light transmittance, 점도 등의 열역학 및 속도론적 특성으로서 설명하였다.

  • PDF

AN EXPERIMENTAL STUDY ON AN ELECTROCHEMICAL REDUCTION OF AN OXIDE MIXTURE IN THE ADVANCED SPENT-FUEL CONDITIONING PROCESS

  • Jeong, Sang-Mun;Park, Byung-Heung;Hur, Jin-Mok;Seo, Chung-Seok;Lee, Han-Soo;Song, Kee-Chan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.183-192
    • /
    • 2010
  • An electrochemical reduction of a mixture of metal oxides was conducted in a LiCl molten salt containing 3 wt% $Li_2O$ at $650^{\circ}C$. The oxide reduction was carried out by applying a current to an electrolysis cell, and the $Li_2O$ concentration was analyzed during each run. The concentration of $Li_2O$ in the electrolyte bulk phase gradually decreases according to Faraday's law due to a slow diffusion of the $O^{2-}$ ions. A hindrance effect of the unreduced metal oxides was observed for the reduction of the uranium oxide. Cs, Sr, and Ba of high heat-load fission products were diffused into and accumulated in the salt phase as predicted with thermodynamic consideration.

Electronic Structure of Iron and Molybdenum in $Li_2FeMoO_4Cl$ and Its Crystal Symmetry ($Li_2FeMoO_4Cl$의 결정구조와 Fe 및 Mo의 전자구조 연구)

  • Choy, Jin-Ho;Park, Nam-Gyu;Chang, Soon-Ho;Park, Hyung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.6
    • /
    • pp.446-452
    • /
    • 1995
  • Lithium intercalates, $Li_xFeMoO_4Cl$ ($1{\leq}X{\leq}2$) prepared by electrochemical lithiation of $FeMoO_4Cl$ crystallizes in monoclinic structure for all x values as revealed by x-ray diffraction and galvanostatic discharge experiments. According to the x-ray photoelectron spectroscopic study, Fe(III) is at first reduced to Fe(II) upon lithium intercalation with the x domain of $0{\leq}X{\leq}1$, where the crystal symmetry is changed from tetragonal to monoclinic. On the other hand, Mo(VI) is reduced to lower valent state upon further lithium intercalation ($1{\leq}X{\leq}2$), where no crystal symmetry transformation and reduction of Fe(II) to lower valent state are observed. The Mo 3d spectrum for $Li_2FeMoO_4Cl$ appears as a complex shape, but can be deconvoluted into the three sets of the doublet on the basis of Gaussian function, those which correspond to Mo(VI), Mo(V) and Mo(IV) states, respectively. The mixed valent states of molybdenum after further lithiation may be due to a competitive reaction between the formation of Mo(V) and its disproportionation to Mo(IV) and Mo(VI).

  • PDF

리튬이차전지용 음극물질로서 Ti-precursor를 이용하여 $Li_4Ti_5O_{12}$ 합성 및 전지특성

  • Kwon, Yong-Jin;Ji, Mi-Jung;Lee, Dae-Jin;Lee, Mi-Jae;Choi, Byung-Hyun;Kim, Young-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.262-262
    • /
    • 2009
  • 최근 리튬이차전지가 전지자동차, hybrid car, PHEV, Ev, UPS 저장장치로 사용되기 시작함에 따라 고용량화, 고출력화가 요구되고 있다. 현재까지 주로 사용 되어왔던 carbon으로는 작동전압이 낮고, 고용량화, 고출력화가 어려워 금속산화물, 금속 비정질 금속 및 금속산화물을 carbon과 혼합 사용 함으로써 차세대 전지로서 특성을 달성하고 있다. 따라서 본 연구에서는 음극 소재로서 안정성이 뛰어난 금속산화물로 $Li_4Ti_5O_{12}$를 합성할 때 저가의 $TiCl_4$를 이용 $Li_4Ti_5O_{12}$가 고밀도를 갖게끔 $TiCl_4$를 이용 구형의 Ti-precursor(전구체)를 합성한 후 구형의 $Li_4Ti_5O_{12}$를 합성하였다. Ti전구체는 $TiCl_4$로부터 합성하였는데 이때 구형을 제조하고자 Hydroxypropyl cellulose(이하 HPC)를 사용하여 반응을 진행하였다. 이때 반응 조건 및 HPC의 몰수 변화에 따른 입자 형상의 변화에 관하여 관찰한 결과, $TiOCl_2$ 0.4mol, 반응온도 $10^{\circ}C$, 유지시간 6시간, HPC양 0.02mol일 때 $0.6{\mu}m$ 정도의 구형 Ti-전구체를 합성하였다. 합성된 Ti-전구체와 리튬수화물을 사용하여 $Li_4Ti_5O_{12}$를 합성 하였고, 상기 물질로 전지특성을 평가하였다.

  • PDF