Electronic Structure of Iron and Molybdenum in $Li_2FeMoO_4Cl$ and Its Crystal Symmetry

$Li_2FeMoO_4Cl$의 결정구조와 Fe 및 Mo의 전자구조 연구

  • Choy, Jin-Ho (Department of Chemistry, Seoul National University) ;
  • Park, Nam-Gyu (Department of Chemistry, Seoul National University) ;
  • Chang, Soon-Ho (Research Department, Electronics and Telecommunication Research Institute) ;
  • Park, Hyung-Ho (Research Department, Electronics and Telecommunication Research Institute)
  • Published : 19950600

Abstract

Lithium intercalates, $Li_xFeMoO_4Cl$ ($1{\leq}X{\leq}2$) prepared by electrochemical lithiation of $FeMoO_4Cl$ crystallizes in monoclinic structure for all x values as revealed by x-ray diffraction and galvanostatic discharge experiments. According to the x-ray photoelectron spectroscopic study, Fe(III) is at first reduced to Fe(II) upon lithium intercalation with the x domain of $0{\leq}X{\leq}1$, where the crystal symmetry is changed from tetragonal to monoclinic. On the other hand, Mo(VI) is reduced to lower valent state upon further lithium intercalation ($1{\leq}X{\leq}2$), where no crystal symmetry transformation and reduction of Fe(II) to lower valent state are observed. The Mo 3d spectrum for $Li_2FeMoO_4Cl$ appears as a complex shape, but can be deconvoluted into the three sets of the doublet on the basis of Gaussian function, those which correspond to Mo(VI), Mo(V) and Mo(IV) states, respectively. The mixed valent states of molybdenum after further lithiation may be due to a competitive reaction between the formation of Mo(V) and its disproportionation to Mo(IV) and Mo(VI).

전기화학적으로 리튬이온을 $FeMoO_4Cl$ 격자내에 층간삽입시킨 $Li_xFeMoO_4Cl$ 화합물은 X-선 회절분석 및 정전류 방전 실험 결과 $1{\leq}X{\leq}2$ 영역에서 단사정계로 결정화되었다. X-선 광전자 분광분석 연구결과, $0{\leq}X{\leq}1$ 영역에서는 리튬이온의 층간삽입시 Fe(III) 이온이 Fe(II) 이온으로 환원되었으며 이때 결정구조는 정방정계에서 단사정계로 전이되었다. 반면, $1{\leq}X{\leq}2$ 영역에서는 Mo(VI) 이온이 낮은 산화상태로 환원되었고, 결정계 전이나 Fe(II) 이온의 환원은 관찰되지 않았다. Mo의 3d X-선 광전자 스펙트럼을 가우스함수를 이용하여 deconvolution한 결과, Mo(VI), Mo(V) 및 Mo(IV)에 해당하는 세 종류의 피크를 분리해 낼 수 있었다. 이와 같이 Mo가 혼합 원자가 상태로 존재하는 이유는 리튬이 층간삽입됨에 따라 생성된 Mo(V)의 일부가 Mo(IV)와 Mo(VI)로 disproportionation되기 때문이다.

Keywords

References

  1. Bull. Korean Chem. Soc. v.10 Choy, J. H.;Chang, S. H.;Noh, D. Y.;Son, K. A.
  2. Bull. Korean Chem. Soc. v.10 Choy, J. H.;Noh, D. Y.;Son, K. A.;Seung, D. Y.
  3. Mat. Res. Bull. v.23 Choy, J. H.;Noh, D. Y.;Park, J. C.;Chang, S. H.;Delmas, C.;Hagenmuller, P.
  4. Eur. J. Solid State Inorg. Chem. v.t27 Choy, J. H.;Noh, D. Y.;Chang, S. H.;Delmas, C.
  5. J. Phys. Chem. Solids v.47 Torardi, C. C.;Reiff, W. M.;Lazar, K.;Prince, E.
  6. J. Chem. Soc. Dalton Trans. Allen, G. C.;Curtis, M. T.;Hooper, A. T.;tucker, P. M.
  7. Bull. Chem. Soc. Jpn. v.46 Kishi, K.;Ikeda, S.
  8. Anal. Chem. v.49 McIntyre, N. S.;Zetaruk, D. G.
  9. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy Briggs, D.;Seah, M. P.
  10. J. Phys. Chem. v.84 Zingg, D. S.;Makovsky, L. E.;Tlscher, R. E.;Brown, F. R.;Hercules, D. M.
  11. Inorg. Chem. v.14 Grim, S. O.;Matienzo, L. J.
  12. Corrosion Sci. v.29 Lu, Y. C.;Clayton, C. R.
  13. Corrosion Sci. v.30 Urgen, M.;Stolz, U.;Kirchheim, R.
  14. J. Phys. Chem. Ref. Data v.18 Bratsch, S. G.