• Title/Summary/Keyword: LiClO₄

Search Result 328, Processing Time 0.027 seconds

Structural and Magnetic Studies on Electrochemically Lithiated $PrBa_2Cu_3O_y$

  • Choy, Jin-Ho;Chun, Sung-Ho;Kang, Seong-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.564-567
    • /
    • 1990
  • A lithiated compound $Li_{0.1}Pr^{3+}Ba_2Cu_3O_y$ has been successfully prepared by electrochemical method, which is achieved with a two electrode cell of the type: Metal(Li)/($Li^+\;,\;ClO_4^-$) + propylene carbonate/$PrBa_2Cu_3O_y$. All Pr ions in the lithiated compound are stabilized with a trivalent state as the other rare earths (Ⅲ) substituted in the 90K superconductor lattice ($Y_{1-x}Ln_x^-Ba_2Cu_3O_{7-{\delta}}$). Powder X-ray diffraction analysis shows that both compounds, $PrBa_2Cu_3O_y$ and $Li_{0.1}PrBa_2Cu_3O_y$ are isostructural with the 90 K superconductor, ($YBa_2Cu_3O_{7-{\delta}}$), nevertheless both of them are non-metallic and also non-superconducting down to 10 K. Magnetic susceptibility ${\chi}$ vs. temperature data indicate that Curie contribution from the magnetic ions (Pr and Cu) is weakened on the one hand, but on the other hand temperature-independent part of susceptibility ${\chi}_o$ increases depending upon the rate of lithium intercalation in $PrBa_2Cu_3O_y$ lattice.

Desalination performance of Al2O3 positively charged nanofiltration composite membrane

  • Li, Lian;Zhang, Xiating;Li, Lufen;Yang, Zhongcao;Li, Yuan
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.105-110
    • /
    • 2022
  • Al2O3 positively charged nanofiltration composite membrane was successfully prepared with aluminate coupling agent (ACA) as modifier, sodium bisulfite (NaHSO3) and potassium persulfate (K2S2O8) as initiator and methacryloyloxyethyl trimethylammonium chloride (DMC) as crosslinking monomer. The surface of the membrane before grafting and after polymerization were characterized by SEM and FT-IR. Three factor and three-level orthogonal experiments were designed to explore the optimal conditions for membrane preparation, and the optimal group was successfully prepared. The filtration experiments of different salt solutions were carried out, and the retention molecular weight was determined by polyethylene glycol (PEG). The results showed that the polymerization temperature had the greatest effect on the rejection rate, followed by the reaction time, and the concentration of DMC had the least effect on the rejection rate. The rejection rates of CaCl2, MgSO4, NaCl and Na2SO4 in the optimal group were 83.8%, 81.3%, 28.1% and 23.6% (average value), respectively. The molecule weight cut-off of 90% (MWCO) of the optimal group was about 460, which belongs to nanofiltration membrane.

A Study on the Impedance Characteristics and Mechanisms of Li Intecalation on the Tin Oxide-flyash Composite Electrodes (Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Jong-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1224-1229
    • /
    • 2004
  • The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.

Development of an Oxide Reduction Process for the Treatment of PWR Spent Fuel (PWR 사용후핵연료 처리를 위한 금속전환공정 개발)

  • Hur, Jin-Mok;Hong, Sun-Seok;Jeong, Sang-Mun;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • Reduction of oxides has been investigated for the volume reduction and recycling of the spent oxide fuel from commercial nuclear power plants. Various oxide reduction methods were proposed and KAERI (Korea Atomic Energy Research Institute) is currently developing an electrochemical reduction process using a LiCl-$Li_2O$ molten salt as a reaction medium. The electrochemical reduction process, the front end of the pyroprocessing, can connect the PWR (Pressurized Water Reactor) oxide fuel cycle to a metal fuel cycle of the sodium cooled fast reactor. This paper summarizes KAERI efforts on the development, improvement, and scale-up of the oxide reduction process.

Synthesis of LiCoO2 Nanoparticles by a Sonochemical Method under the Multibubble Sonoluminescence Conditions

  • Park, Jong-Pil;Park, Jea-Young;Hwang, Cha-Hwan;Choi, Myung-Ho;Kim, Jee-Eon;Ok, Kang-Min;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.327-330
    • /
    • 2010
  • $LiCoO_2$, a cathode material for lithium rechargeable batteries, was prepared in a nanoscale through a simple sonochemistry. First, $Co_3O_4$ nanoparticles were prepared by reacting NaOH and $CoCl_2$ or $CoSO_4$ with a sonochemical method, operated at 20 kHz and 220 W for 20 min, very powerful multibubble sonoluminescence conditions for chemical reactions. Second, LiOH was coated onto the $Co_3O_4$ nanoparticles by the same method as above. Finally, $LiCoO_2$ nanoparticles of about 10~30 nm size in diameter were obtained by the thermal treatment of the resulting LiOH-coated $Co_3O_4$ nanoparticles at $500^{\circ}C$ for 3 hr. This synthetic process is relatively quite mild and simple compared to the known method for the synthesis of $LiCoO_2$ nanoparticles. The materials synthesized were characterized by infrared spectroscopy, X-ray diffraction, inductively coupled plasma spectrometer, and high resolution-transmission electron microscopy analyses.

Electrochemical Quantitative Analysis of Mn(II) for the Study of Mn-Dissolution Behavior of LiMn2O4 (LiMn2O4의 Mn용출 현상 연구를 위한 전기화학적 Mn(II) 정량 분석법)

  • Son, Hwa-Young;Lee, Min-Young;Ko, Hyoung-Shin;Lee, Ho-Chun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.131-137
    • /
    • 2011
  • A simple and rapid electrochemical method for the quantitative analysis of $Mn^{2+}$ ion is demonstrated with a view to examine the $Mn^{2+}$ dissolution behavior of $LiMn_2O_4$. The method described herein is based on the oxidation reaction of $Mn^{2+}$ to $Mn^{4+}(MnO_2)$ in aqueous buffer solution. Under the optimum condition (pH 8.9 0.04 M $NH_3-NH_4Cl$ buffer solution and glassy carbon working electrode), the linear range of $5{\mu}M-100{\mu}M$ (0.275-5.5 ppm) [$Mn^{2+}$] is obtained for the Linear sweep voltammetry(LSV) and $0.2{\mu}M-10{\mu}M$ (0.011-0.55 ppm) [$Mn^{2+}$] for the differential pulse voltammetry (DPV), respectively. It is also noted that the oxidation reaction of $Mn^{2+}$ ion is reduced with increasing amount of the electrolyte ($LiPF_6$, EC, EMC) added to the measuring solution, which is found to be mainly due to $LiPF_6$ and EC rather than EMC.

Effects of Li-Sources on Microstructure of Metallurgically Pre-Lithiated SiOx for Li-Ion Battery's Anode (야금학적으로 Pre-Lithiation된 리튬이온전지 음극용 SiOx의 리튬소스가 미세구조에 미치는 영향)

  • Lee, Jae Young;Lee, Bora;Kim, Nak-Won;Jang, Boyun;Kim, Junsoo;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.78-85
    • /
    • 2019
  • The effect of various lithium sources such as LiCl, LiOH, and Li-metal on the microstructure and electrochemical properties of granulated $SiO_x$ powders were investigated. Various lithium sources were metallurgically added for a passive pre-lithiation of $SiO_x$ to improve its low initial coulombic efficiency. In spite of using the same amount of Li in various sources, as well as the same process conditions, different lithium silicates were obtained. Moreover, irreversible phases were formed without reduction of $SiO_x$, which might be from additional oxygen incorporation during the process. Accordingly, there were no noticeable electrochemical enhancements. Nevertheless, the $Li_4SiO_4$ phase changes the initial electrochemical reaction, and consequently the relationship between the microstructure and electrochemical properties of metallurgically pre-lithiated $SiO_x$ could provide a guideline for the optimization of the performance of lithium ion batteries.

Dry Etching Characteristics of Zinc Oxide Thin Films in Cl2-Based Plasma

  • Woo, Jong-Chang;Ha, Tae-Kyung;Li, Chen;Kim, Seung-Han;Park, Jung-Soo;Heo, Kyung-Mu;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.60-63
    • /
    • 2011
  • We investigated the etching characteristics of zinc oxide (ZnO) and the effect of additive gases in a $Cl_2$-based inductively coupled plasma. The inert gases were argon, nitrogen, and helium. The maximum etch rates were 44.3, 39.9, and 37.9 nm/min for $Cl_2$(75%)/Ar(25%), $Cl_2$(50%)/$N_2$(50%), and $Cl_2$(75%)/He(25%) gas mixtures, 600 W radiofrequency power, 150 W bias power, and 2 Pa process pressure. We obtained the maximum etch rate by a combination of chemical reaction and physical bombardment. A volatile compound of Zn-Cl. achieved the chemical reaction on the surface of the ZnO thin films. The physical etching was performed by inert gas ion bombardment that broke the Zn-O bonds. The highly oriented (002) peak was determined on samples, and the (013) peak of $Zn_2SiO_4$ was observed in the ZnO thin film sample based on x-ray diffraction spectroscopy patterns. In addition, the sample of $Cl_2$/He chemistry showed a high full-width at half-maximum value. The root-mean-square roughness of ZnO thin films decreased to 1.33 nm from 5.88 nm at $Cl_2$(50%)/$N_2$(50%) plasma chemistry.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Preparation of Li-ferrite Powders by Hyrtothermal Method (수열합성법에 의한 Li-ferrite 분말 제조)

  • Lee, Jong-Hyeon;Kang, Yong;Won, Chang-Whan;Chun, Byong-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.543-548
    • /
    • 1995
  • Li-ferrite powders were prepared from mixture of Fe and Li salts using a hydrothermal method. Their crystal structure, microstructure and magnetic property were investigated with X-ray diffraction analysis, chemical analysis, SEM, and VSM. In the case of using FeCl3 as a precursor, Li-ferrite powders were synthesized. However, Fe3O4 was formed when the precursor was a divalented Fe2SO4 or FeCl2. The precipitation rate of Li-ferrite was increased as the reaction temperature increased. The optimum conditions of synthesis were the mole ratio of Fe+++/Li+=2, pH 13, the reaction temperature of 25$0^{\circ}C$ and the reaction time of 120min. With this condition, the spherical particles with good dispersion were obtained with average particle size of 0.4${\mu}{\textrm}{m}$ and saturation magnetization of 65 emu/g.

  • PDF