DOI QR코드

DOI QR Code

Dry Etching Characteristics of Zinc Oxide Thin Films in Cl2-Based Plasma

  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Ha, Tae-Kyung (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Li, Chen (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Seung-Han (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Park, Jung-Soo (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Heo, Kyung-Mu (Department of Renewable Energy, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering and Department of Renewable Energy, Chung-Ang University)
  • Received : 2011.02.05
  • Accepted : 2011.03.19
  • Published : 2011.04.25

Abstract

We investigated the etching characteristics of zinc oxide (ZnO) and the effect of additive gases in a $Cl_2$-based inductively coupled plasma. The inert gases were argon, nitrogen, and helium. The maximum etch rates were 44.3, 39.9, and 37.9 nm/min for $Cl_2$(75%)/Ar(25%), $Cl_2$(50%)/$N_2$(50%), and $Cl_2$(75%)/He(25%) gas mixtures, 600 W radiofrequency power, 150 W bias power, and 2 Pa process pressure. We obtained the maximum etch rate by a combination of chemical reaction and physical bombardment. A volatile compound of Zn-Cl. achieved the chemical reaction on the surface of the ZnO thin films. The physical etching was performed by inert gas ion bombardment that broke the Zn-O bonds. The highly oriented (002) peak was determined on samples, and the (013) peak of $Zn_2SiO_4$ was observed in the ZnO thin film sample based on x-ray diffraction spectroscopy patterns. In addition, the sample of $Cl_2$/He chemistry showed a high full-width at half-maximum value. The root-mean-square roughness of ZnO thin films decreased to 1.33 nm from 5.88 nm at $Cl_2$(50%)/$N_2$(50%) plasma chemistry.

Keywords

References

  1. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001) [DOI: 10.1016/s0921-5107(00)00604-8].
  2. S. J. Peaton, D.P. Norton, K, Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005). https://doi.org/10.1016/j.pmatsci.2004.04.001
  3. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Commun. 105, 399 (1998) [DOI: 10.1016/s0038-1098(97)10145-4].
  4. W. Lim, L. Voss, R. Khanna, B. P. Gila, D. P. Norton, S. J. Pearton, and F. Ren, Appl. Surf. Sci. 253, 889 (2006) [DOI: 10.1016/j.apsusc.2006.01.037].
  5. S. W. Na, M. H. Shin, Y. M. Chung, J. G. Han, S. H. Jeung, J. H. Boo, and N. E. Lee, Microelectron. Eng. 83, 328 (2006) [DOI: 10.1016/j.mee.2005.09.007].
  6. J. C. Woo, G. H. Kim, J. G. Kim, and C. I. Kim, Surf. Coat. Technol. 202, 5705 (2008) [DOI: 10.1016/j.surfcoat.2008.06.077].
  7. J. C. Woo, D. S. Um, and C. I. Kim, Thin Solid Films 518, 2905 (2010) [DOI: 10.1016/j.tsf.2009.10.144].
  8. J. L. van Heerden and R. Swanepoel, Thin Solid Films 299, 72 (1997) [DOI: 10.1016/s0040-6090(96)09281-4].
  9. G. Srinivasan and J. Kumar, Cryst. Res. Technol. 41, 893 (2006) [DOI: 10.1002/crat.200510690].
  10. K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S. J. Park, and J. H. Song, J. Appl. Phys. 87, 3573 (2000) [DOI: 10.1063/1.372383].
  11. S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr, and M. R. Davolos, Int. J. Inorg. Mater. 3, 749 (2001) [DOI: 10.1016/s1466-6049(01)00055-1].
  12. M. A. Sobolewski, J. K. Olthoff, and Y. Wang, J. Appl. Phys. 85, 3966 (1999) [DOI: 10.1063/1.370298].

Cited by

  1. Challenges in fabrication and testing of piezoelectric MEMS with a particular focus on energy harvesters vol.19, pp.8, 2013, https://doi.org/10.1007/s00542-012-1721-8