DOI QR코드

DOI QR Code

Electrochemical Quantitative Analysis of Mn(II) for the Study of Mn-Dissolution Behavior of LiMn2O4

LiMn2O4의 Mn용출 현상 연구를 위한 전기화학적 Mn(II) 정량 분석법

  • Son, Hwa-Young (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Lee, Min-Young (Rechargeable Battery Materials Division, Phoenix Materials Co., Ltd.) ;
  • Ko, Hyoung-Shin (Rechargeable Battery Materials Division, Phoenix Materials Co., Ltd.) ;
  • Lee, Ho-Chun (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 손화영 (금오공과대학교 응용화학과) ;
  • 이민영 (휘닉스 소재 이차전지 사업부) ;
  • 고형신 (휘닉스 소재 이차전지 사업부) ;
  • 이호춘 (대구경북과학기술원(DGIST) 에너지시스템공학)
  • Received : 2011.07.18
  • Accepted : 2011.08.01
  • Published : 2011.08.31

Abstract

A simple and rapid electrochemical method for the quantitative analysis of $Mn^{2+}$ ion is demonstrated with a view to examine the $Mn^{2+}$ dissolution behavior of $LiMn_2O_4$. The method described herein is based on the oxidation reaction of $Mn^{2+}$ to $Mn^{4+}(MnO_2)$ in aqueous buffer solution. Under the optimum condition (pH 8.9 0.04 M $NH_3-NH_4Cl$ buffer solution and glassy carbon working electrode), the linear range of $5{\mu}M-100{\mu}M$ (0.275-5.5 ppm) [$Mn^{2+}$] is obtained for the Linear sweep voltammetry(LSV) and $0.2{\mu}M-10{\mu}M$ (0.011-0.55 ppm) [$Mn^{2+}$] for the differential pulse voltammetry (DPV), respectively. It is also noted that the oxidation reaction of $Mn^{2+}$ ion is reduced with increasing amount of the electrolyte ($LiPF_6$, EC, EMC) added to the measuring solution, which is found to be mainly due to $LiPF_6$ and EC rather than EMC.

[ $LiMn_2O_4$ ] $Mn^{2+}$이온 용출현상 연구를 위한 간단하고 신속한 전기화학적 $Mn^{2+}$이온 분석법을 정립하였다. 이 분석법은 완충용액에서 $Mn^{2+}$이온이 $Mn^{4+}(MnO_2)$로 산화되는 원리를 이용한다. 최적조건 (pH 8.9 0.04 M $NH_3-NH_4Cl$ 완충용액 및 glassy carbon 작업전극)에서, Linear sweep voltammetry(LSV) 측정에 대해 $5{\mu}M-100{\mu}M$ (0.275-5.5 ppm) $Mn^{2+}$이온 범위에서, differential pulse voltammetry (DPV) 측정에 대해 $0.2{\mu}M-10{\mu}M$ (0.011-0.55 ppm) 범위에서 선형적 응답 특성을 확인하였다. 또한, 측정용액에 리튬 이차전지용 전해액 ($LiPF_6$, EC, EMC)이 첨가할 경우, 첨가량에 비례하여 $Mn^{2+}$ 이온의 산화 전류 감소하였는데, 이러한 감소의 주요 원인은 EMC보다는 $LiPF_6$와 EC성분임을 확인하였다.

Keywords

References

  1. C.-H. Doh, J.-H. Lee, D.-J. Lee, B.-S Jin and S.-I. Moon, 'The quantitative analyses of the dissolved manganese in the electrolyte of $li/limn_2o_4$ cell using by ion chromatography' Bull. Kor. Chem. Soc., 30, 2429, (2009). https://doi.org/10.5012/bkcs.2009.30.10.2429
  2. M. Sano, T. Hattori, T. Hibino and M. Fujita, 'Improved $LiMn_2O_4$/Graphite Li-Ion cells at $55^{\circ}C$' Electrochem. Solid-State Lett., 10, A270, (2007). https://doi.org/10.1149/1.2784141
  3. K. Takahashi, M. Saitoh, N. Asakura, T. Hibino, M. Sano, M. Fujita and K. Kifune, 'Electrochemical properties of lithium manganese oxides with different surface areas for lithium ion batteries' J. Power Sources, 136, 115, (2004). https://doi.org/10.1016/j.jpowsour.2004.05.014
  4. D. H. Jang, Y. J. Shin and S. M. Oh, 'Dissolution of spinel oxides and capacily losses in 4 V Li/$Li,Mn_2O_4$ Cells' J. Electrochem. Soc., 143, 2204, (1996). https://doi.org/10.1149/1.1836981
  5. D. H. Jang and S. M. Oh, 'Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/$Li_xMn_2O_4$ rechargeable cells' J. Electrochem. Soc., 144, 3342, (1997). https://doi.org/10.1149/1.1838016
  6. H. Lee, J.-J. Cho, J. Kim and H.-J. Kim 'Comparison of voltammetric responses over the cathodic region in $LiPF_6$ and LiBETI with and without HF' J. Electrochem. Soc., 152, A1193, (2005). https://doi.org/10.1149/1.1914748
  7. J. Di and F. Zhang, 'Voltammetry determination of trace manganese with pretreatment glassy carbon electrode by linear sweep voltammetry' Talanta, 60, 31, (2003). https://doi.org/10.1016/S0039-9140(03)00062-6
  8. K. Tasaki, K. Kanda, S. Nakamura, and M. Ue, 'Decomposition of $LiPF_6$ and stability of PF5 in Li-ion battery electrolyte' J. Electrochem. Soc., 150, A1628, (2003). https://doi.org/10.1149/1.1622406

Cited by

  1. Roles of Fluorine-doping in Enhancing Initial Cycle Efficiency and SEI Formation of Li-, Al-cosubstituted Spinel Battery Cathodes vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.384